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Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

bRobotics & Automation Group, Dept. of Mechanical and Manufacturing Engineering,
Aalborg University, Fibigerstraede 14, 9220 Alborg, Denmark

Abstract

A typical robot assembly operation involves contacts with the parts of the product to
be assembled and consequently requires the knowledge of not only position and orien-
tation trajectories but also the accompanying force-torque profiles for successful per-
formance. To learn the execution of assembly operations even when the geometry of
the product varies across task executions, the robot needs to be able to adapt its motion
based on a parametric description of the current task condition, which is usually pro-
vided by geometrical properties of the parts involved in the assembly. In our previous
work we showed how positional control policies can be generalized to different task
conditions. In this paper we propose a complete methodology to generalize also the
orientational trajectories and the accompanying force-torque profiles to compute the
necessary control policy for a given condition of the assembly task. Our method is
based on statistical generalization of successfully recorded executions at different task
conditions, which are acquired by kinesthetic guiding. The parameters that describe the
varying task conditions define queries into the recorded training data. To improve the
execution of the skill after generalization, we combine the proposed approach with an
adaptation method, thus enabling the refinement of the generalized assembly operation.

Keywords: Trajectory generalization, trajectory adaptation, programming by
demonstration

1. Introduction

Robot assembly is one of the prime robotic tasks that can be found in industrial
applications. It typically involves contacts between the robot and the objects involved
in the task. The execution thus needs references for desired positions, orientations,
and forces and torques (wrench). All of these can be provided for known, previously
explored task conditions. However, that makes the execution possible only for a very
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small set of explored situations. In this paper we propose a method of generating the
required referential trajectories through statistical generalization. While generalization
of positions has been previously discussed in the literature [1, 2], the novelty of this
paper is: 1) generalization of orientation trajectories in unit quaternion space and 2)
the generalization of force-torque profiles to provide referential forces and torques for
assembly execution at previously unexplored task conditions.

As reported in the 2016 edition of A Roadmap for US Robotics [3], mass cus-
tomization, which is an opposite to mass production, is ever more present in small and
medium enterprises, but also in big manufacturers, such as the automotive industry.
The impact of this trend is that the production systems have to adapt to handle more
product variations, shorter life cycles, and smaller batch sizes. One of the main en-
ablers of this transition is robotics and specifically robotic systems that are able to be
reprogrammed quickly by non-robotics experts or reconfigure automatically when a
new task in a factory arises [4]. Furthermore, such systems need to be able to take into
account uncertainty in interactions with humans [5] and work in a collaborative manner
[6]. Algorithms for autonomous adaptation of robots to the current state of the robotic
workcell, i. e., the desired customized production, are a step further in the evolution of
adaptive robotic cells.

In this paper we introduce methods that allow autonomous generation of trajecto-
ries from a database of related, but different situations. The approach is rooted in Pro-
gramming by Demonstration (PbD) and statistical learning of robot trajectories. Recent
work on learning by demonstration [7, 8], e. g., through kinesthetic guiding of robotic
arms [9, 10, 11, 12, 13], has surpassed the traditional application of programming by
demonstration, making it more suitable for industrial applications. Kinesthetic guid-
ing has provided the necessary framework for knowledge transfer in industrial settings,
using the new generation robotic arms such as the Kuka LWR series robot manipula-
tors. The major advantage is that with kinesthetic guiding we can avoid the need for
additional sensors to enable motion transfer and for transformation of human motion
to robot motion.

A widely accepted approach in PbD is to encode the trajectories into a form that
allows for easy application of various adaptations. Often, this is done with the use
of dynamic movement primitives (DMP) [14]. This framework enables efficient mod-
ulation of trajectories while they are being executed, both spatially and temporally,
because they are not explicitly time dependent. Schaal et al. [15] explain that direct
time dependence is often inappropriate, since it does not allow to change the speed of
execution. Furthermore, it does not allow stopping or restarting robotic movements in
the event of unforeseen disturbances during execution of the desired task. However, the
ability to adapt speed is important, because speed changes during execution of contact
tasks are often required in order to raise the success ratio. Nevertheless, adaptation
of a single trajectory is unlikely to provide an appropriate solution for more general
situations, where positions, orientations, and force-torque profiles need to change sig-
nificantly.

1.1. Generalization of position and orientation trajectories
Generalization from a database of previously explored situations has been applied

to adapt to new situations. Locally weighted regression is one of several statistical gen-
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eralization methods that were successfully applied in robotics within the DMP frame-
work. Besides the locally weighted regression (LWR) [16], locally weighted projec-
tion regression (LWPR) [17], and Gaussian process regression (GPR) [18] have been
applied most frequently. For example, Matsubara et al. [19] proposed an algorithm for
the generation of new control policies from existing knowledge, thereby achieving an
extended scalability of DMPs, while mixture of motor primitives was used for gener-
ation of table tennis swings in [20]. On the other hand, generalization of DMPs was
combined with model predictive control by Krug and Dimitrov [21] or applied to DMP
coupling terms [22], which were learned and later added to a demonstrated trajectory to
generate new joint space trajectories. Furthermore, Stulp et al. [23] proposed learning
a function approximator with one regression in the full space of phase and tasks param-
eters, bypassing the need for two consecutive regressions. Finally, generalization using
GPR was applied over combined joint position trajectories and torque commands in
the framework of compliant movement primitives [24], extending the DMP framework
beyond the kinematic trajectory properties.

An important contribution of this paper is the generalization of orientation trajec-
tories. Planning of trajectories in Cartesian space does not allow direct application of
aforementioned generalization methods (per each degree of freedom), because there
exists no minimal, singularity-free representation of orientation [25]. For example, the
quaternion representation as a singularity-free but non-minimal representation of ori-
entation with only 4 parameters (compared to 9 parameters of rotation matrices) must
fulfill an additional constraint in 4-D space (unit norm) to describe a manifold of all
orientations. Such constraints are not taken into account by general learning methods,
and thus they are not preserved when learning from parameters that are constrained to
a specific manifold. In this paper we provide a formal solution to applying the afore-
mentioned LWR for generalization of orientation trajectories in such a way that that the
generalized trajectory is guaranteed to lie on the orientation constraint manifold. To
achieve this, we apply it to the differences between trajectories, which are expressed as
3-D vectors and are therefore not constrained to the unit manifold. We use Cartesian
space DMPs [25] as the underlying representation for orientation trajectories. This ap-
proach integrates the equations of motion directly on the orientation manifold and is
therefore guaranteed to generate quaternions with unit norm.

1.2. Generalization of contact tasks
For in-contact task, such as assembly, it has been shown that adaptation of the

trajectories is extremely important [26] because even small positional deviations can
result in high forces acting on the robot, consequently leading to a failed execution or
even damaging the robot. Consequently, the robot control algorithm should consider
the arising forces and torques [27]. Abu-Dakka et al. [28] proposed a method for
assembly task execution from human demonstration with adaptation to reference force-
torque profiles. Their method uses a single demonstration to provide the reference
positions and orientations, which the robot had to change with respect to the desired
force-torque profile in order to respond to noise and other small task changes.

In this work we propose a method to generalize position and orientation trajectories
as well as the accompanying force-torque profiles based on a set of previously demon-
strated assembly tasks at significantly different task conditions. Unlike [28], our newly
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proposed method allows for adaptation to significant task changes. Approaches that
adapt both positions/orientations and force-torque profiles have been proposed before.
A method for real-time adaptation of learned trajectories depending on measured sen-
sory data, where a force controller modified the accelerations of the DMP to comply
with the previously measured force profile was proposed by Pastor et al. [26]. The ap-
proach was also expanded to provide a library of stereotypical movements associated
with experienced sensory information [29]. On the other hand, we previously proposed
methods where arbitrary desired force-torque profiles could be tracked using iterative
learning control [30, 28]. Koropouli et al. [31] have progressed beyond mere adapta-
tion and employed generalization approaches for motion-based force control policies.
By learning both the policy and the policy difference data using locally weighted re-
gression (LWR), they could estimate the policy at new inputs through superposition
of the training data. A hybrid position-force control concept based on sequencing of
movement primitives that contain kinematic and force modalities and are learned by
kinesthetic guiding was proposed in [32]. In contrast to these approaches, Khansari
et al. [33] did not use the demonstrated forces and torques directly but analyzed the
data to identify higher level features of the human strategy and then incorporated these
features into the controller.

Our proposed approach is applicable to generalization of contact-rich robotic skills,
where we generate complete movement and force-torque profiles for new queries (in-
puts). We tested the proposed approach on a classical, contact-rich robotics assembly
task, i. e. peg-in-hole (PiH). Model-based approaches have been extensively studied
in the past [34, 35, 36]. PiH has also been used to demonstrate the abilities of learn-
ing neural network policies [37]. Similar to the latter, in this paper PiH is used to
demonstrate the applicability of the proposed learning-based approach. The gist of our
approach is in adapting to an external condition, which defines the task and can result
in significant changes in the required robot motion, which cannot be handled by feed-
back control and fine adaptation only. In the PiH case, this external condition – used
as a query into a library of demonstrated movements – can for example be the depth
and diameter of the hole. The major novelty of the proposed method is that it allows
the transfer of the learned skill that involves position and force control from multiple
known conditions of the task (acquired by kinesthetic guiding), to new, previously un-
known conditions, thereby providing the required trajectory and force-torque profile.
Previously proposed adaptation methods can then be applied to refine the generalized
motion [27, 38, 28]. The combination of generalization and subsequent adaptation pro-
vides us with a very versatile solution, which can be applied to different robotic tasks
and platforms.

1.3. Overview

This paper is organized as follows. In Section 2 we explain what data is needed and
how it is collected. In Section 3 we then provide a theoretical description of the pro-
posed orientation trajectory and force-torque profile generalization method, followed
by an explanation on the subsequent adaptation of generalized trajectories in Section
4. Experimental evaluation of the orientational motion generalization method based
on the valve turning experiment and the force-torque profile generalization with adap-
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Figure 1: Kinesthetic guiding of KUKA LWR-4 robot arm, which was used to capture the training data for
generalization of force-torque profiles (left) and orientational trajectories (right).

tation based on the peg-in-hole task follows in Section 5, with conclusions given in
Section 6.

2. Recording the example movement library

Robot task execution can be captured in several ways. In this work we focus on
kinesthetic guiding, shown in Fig. 1. 6-D Cartesian space movement trajectories are
captured together with the forces and torques acting on the end-effector. These forces
and torques are thus given in the robot tool frame. To record the training data, a human
operator physically guides the robot along the desired trajectory and thus receives the
same feedback from the environment as the robot. Consequently, the initial trajectories
are from the human perspective optimal. If necessary they could be refined by means of
reinforcement learning [38] or similar methods. Since such a refinement is not among
the contributions of this paper, we omit further discussions of this topic.

To learn assembly skills by kinesthetic guiding, the following training data (trajec-
tories) should be captured

Ad ,= {pppi, j,qqqi, j, ṗppi, j,ωωω i, j, p̈ppi, j,ω̇ωω i, j, ti, j}Ti, NumEx
j=1, i=1 , (1)

where pppi, j, qqqi, j are the measured Cartesian space positions and orientations (repre-
sented as unit quaternions). ṗppi, j, ωωω i, j, p̈ppi, j, and ω̇ωω i, j are the associated linear and an-
gular velocities and accelerations, usually estimated from the recorded positions and
orientations by numerical differentiation. See reference [39] and Appendix A for more
details about quaternion representation of orientation. In addition, the resulting forces
and torques arising at the robot’s end-effector are needed

Fd ,= {FFF i, j,MMMi, j}Ti, NumEx
j=1, i=1 . (2)

All these data are recorded at times ti, j, j = 1, . . . ,Ti, where Ti denotes the number of
measurements in the i-th training set, i = 1, . . . ,NumEx, is the index of the training set,
and NumEx is the number of training sets (example task executions demonstrated by
kinesthetic guiding).
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Note that some robots use joint torques to estimate the end-effector forces and
torques. In such cases the measured forces and torques are influenced by the human
demonstrator. To obtain net forces and torques that are not corrupted by the influence
of human demonstrator, we play back the recorded motion in exactly the same con-
figuration of the workcell without human intervention. The forces and torques arising
during such play back are measured and stored instead of the forces and torques arising
during human demonstration. This procedure could be avoided if a force-torque sensor
is used to capture the sensory feedback directly at the end-effector. However, even in
such cases it is sometimes necessary to repeat the demonstrated movement because a
better demonstration by kinesthetic guiding can often be generated when holding the
manipulated object (Fig. 1) instead of holding the robot.

Training trajectories and force-torque profiles are recorded at different external
conditions (queries) sss, which can be one or multi-dimensional. In PiH experiments
described in Section 5.3, the queries sssi are defined by the depth of the hole hi and the
diameter of the hole di, sssi = [hi,di]

T . When generalizing the orientational trajectories
as discussed in Section 5.1, the queries were one dimensional and given as the desired
rotation angle of the valve, si = ϕi. These queries must be saved with the rest of the
training data

Sd = {sssi}NumEx
i=1 . (3)

Note that the distribution of example trajectories and the accompanying queries
influences the success of generalization. Best results are usually obtained if the queries
are uniformly distributed. Furthermore, as explained in [2], the recorded data (position
and orientation trajectories and force-torque profiles) must transition smoothly between
queries.

3. Generalization of Assembly Skills

3.1. Cartesian space DMPs – CDMPs

Since it is important for the understanding of the paper, we start our derivations by
explaining the basics of Cartesian space dynamic movement primitives, abbreviated as
CDMPs in this paper. CDMPs were originally proposed in [25]. In standard DMPs, tra-
jectories are represented by nonlinear dynamic equations that can be flexibly adjusted
to represent complex trajectories without the danger of instability of the equations [15].
In CDMPs, the positional part of the trajectory is treated as in standard DMPs, whereas
the orientational part of the trajectory is represented by unit quaternions that require
special treatment, both in the nonlinear dynamic equations and when integrating these
equations.

A CDMP consists of the following free parameters: weights wwwp
k , wwwo

k ∈ R3, k =
1, . . . ,N, to respectively represent the positional and orientational part of the trajectory,
trajectory duration τ and the final desired position gggp and orientation gggo at which the
robot comes to rest. Parameter N defines the number of basis functions that are needed
to approximate the trajectory. In the CDMP the orientation is represented by a unit
quaternion qqq = v+uuu ∈ S3, where S3 is a unit sphere in R4. The following formulation

6



has been proposed in [25] to encode position (ppp) and orientation (qqq) trajectories

τ ż = αz(βz(gp−p)− z)+ fp(x), (4)
τṗ = z, (5)
τη̇ηη = αz (βz2log(gggo ∗qqq)−ηηη)+ fo(x), (6)

τq̇qq =
1
2

ηηη ∗qqq, (7)

τ ẋ = −αx. (8)

Here zzz and ηηη denote the scaled linear and angular velocity (zzz = τ ṗpp, ηηη = τωωω). The
quaternion product ∗, conjugation qqq, and the quaternion logarithm log(qqq) are explained
in the appendix. The forcing terms fp and fo in the CDMP are nonlinear and defined as

fp(x) = DDDp
∑

N
k=1 wp

k Ψk(x)

∑
N
k=1 Ψk(x)

x, (9)

fo(x) = DDDo
∑

N
k=1 wwwo

kΨk(x)

∑
N
k=1 Ψk(x)

x. (10)

Note that the aforementioned free parameters wwwp
k , wwwo

k ∈R3 are contained in the forcing
terms. They should be adjusted to reproduce any given smooth Cartesian trajectory
{ppp j, qqq j, ṗpp j,ωωω j, p̈pp j, ω̇ωω j, t j}T

j=1. The scaling matrices DDDp, DDDo ∈R3×3 can be set to DDDp =
DDDo = III. Other possibilities are described in [25]. The nonlinear forcing terms are
defined as a linear combination of radial basis functions Ψk

Ψk(x) = exp
(
−hk (x− ck)

2
)
. (11)

In the above equation ck are the centers and hk the widths of RBFs. The distribution of
weights can be defined in various ways, but here we follow the proposal from [1] where

ck = exp
(
−αx

k−1
N−1

)
, hk =

1
(ck+1− ck)2 , hN = hN−1, k = 1, . . . ,N. The time constant τ

is set to the desired duration of the trajectory, i. e. τ = tT − t1. The goal position and
orientation are usually set to the final position and orientation on the desired trajectory,
i. e. gggp = ppptT and gggo = qqqtT . Auxiliary math for the calculation and integration of
Cartesian space DMPs is given in Appendix A. More details about CDMPs can be
found in [25].

In the following we explain how to exploit this representation of Cartesian trajec-
tories for the generalization of position and orientation trajectories.

3.2. Generalization functions

Assembly skills for new, previously unexplored task parameters (queries) sss can be
computed using the available training data (1) – (3). We apply locally weighted regres-
sion (LWR) [16] for statistical generalization of these data. LWR is a non-parametric
method for statistical approximation, which uses raw data stored in memory, to de-
termine new movements. In this paper we differentiate between three utilizations for
generalization: for position, for orientation, and for force-torque profiles.

7



LWR was used for the generalization of position trajectories in [1], where it was
applied to generalize throwing, reaching and drumming movements. The second uti-
lization and the first novelty of this paper is the generalization of orientation trajectories
in unit quaternion space. In this paper we show how we can apply LWR for generaliza-
tion of orientation motion so that the generalized trajectory is guaranteed to lie on the
orientation constraint manifold, i. e. so that the outcome of the generalization is a unit
quaternion trajectory. The third utilization and the second major novelty of this paper
is that we show how to apply LWR for forces and torques, thus generating a desired
profile for an action at a previously unexplored query.

As explained above, the Cartesian position and orientation trajectories are encoded
as CDMPs (see Section 3.1) and thus contain the following free parameters: weights
{wwwp

k , wwwo
k}N

k=1, trajectory duration τ , and the final desired position gggp and orientation gggo.
On the other hand, force-torque profiles are encoded as linear combinations of radial
basis functions (RBFs) defined in Eq. (11)

FFF(x) =
∑

N
k=1 vvvF

k Ψk(x)

∑
N
k=1 Ψk(x)

, (12)

MMM(x) =
∑

N
k=1 vvvM

k Ψk(x)

∑
N
k=1 Ψk(x)

. (13)

Here {vvvF
k , vvvM

k }N
k=1 are the free parameters that can be adjusted to approximate the

reference force-torque profiles. Both position and orientation trajectories, encoded as
CDMPs, and forces and torques, encoded with RBFs, share the same phase variable
x. Note that unlike in CDMPs, where radial basis functions Ψk are multiplied with
phase x in Eq. (10) to ensure faster convergence to the desired goal after the end of the
training interval, it is not necessary to add this multiplication to Eq. (12) – (13) because
the reference forces and torques have no meaning beyond the training interval. The
weights vvvF

k , vvvM
k need to be computed from the training data to generate the generalized

force-torque profiles.
As the name locally weighted regression suggests, LWR computes local models

by putting more emphasis on the data with training queries sssi close to the given query
point sss. Formally, we compute the following mappings

Gp(Ad ,Sd) : sss→
[
wwwp

1
T
, . . . ,wwwp

N
T
, τ, gggpT

]T
, (14)

Go(Ad ,Sd) : sss→
[
wwwo

1
T, . . . ,wwwo

N
T, τ, gggoT

]T
, (15)

to synthesize a Cartesian space DMP and

G f m(Fd ,Sd) : sss→
[
vvvF

1
T
, . . . ,vvvF

N
T
, vvvM

1
T
, . . . ,vvvM

N

]T
(16)

to synthesize reference force-torque profiles.
The generation of generalization function Gp is the same as in [1] and we refer

the reader to this paper for implementation details. In the following we explain the
generation of the mapping Go. The generation of function G f m for the generalization
of force-torque profiles is explained in Section 3.4.
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3.3. Generalization of orientation trajectories

Generalization of position and force-torque profiles, as explained in the previous
section, cannot be analogously applied to the generalization of unit quaternion trajec-
tories because the resulting generalized orientation would not preserve the unit norm,
thus requiring an additional normalization step. Here we propose an approach that
allows us to apply locally weighted regression without normalization. The proposed
procedure generalizes among the differences between orientation trajectories instead
of quaternion trajectories directly.

Our approach starts by searching for a training query point sssk closest to the new
given query s, at which the new orientation trajectory has to be synthesized

k = argmin
i
{‖sss−sssi‖}. (17)

In our experiments we used the Euclidean norm, but other metrics could be used if
required by the selection of query points. We continue by computing unit quaternion
DMP qDMP

k for orientation trajectory closest to the given query point sss. The following
training data are used for this purpose

{qqqk, j,ωωωk, j,ω̇ωωk, j, tk, j}Tk
j=1. (18)

Next, differences between the training trajectories (1) and the estimated qDMP
k are cal-

culated along the phase of the training data. These differences define a new training
data set

A ′
d = {rrri, j, ti, j}NumEx, Ti

i=1, j=1 , (19)

where

rrri, j = log
(

qqqi, j ∗qDMP
k (xi, j)

)
, (20)

xi, j = exp
(
−αx

τi
ti, j

)
. (21)

Note that τi = ti,Ti−ti,1. Unlike the unit quaternions qqqi, j, the difference vectors rrri, j ∈R3

are unconstrained. Hence locally weighted regression can be applied to these data with-
out constraints. Another important point is that data in (20) correspond to a rotation
vector representation of orientation, often called exponential coordinates. This repre-
sentation is minimal and thus as every minimal representation of orientation contains
singularities. However, due to the properties of exponential and logarithmic maps de-
fined in the appendix, these singularities only arise at large rotation angles. Below we
explain why our generalization approach is guaranteed to avoid such rotation angles.

Given training data (19), we can compute the generalized difference trajectory r
associated with the given query point sss. Just like for forces and torques, we write this
difference trajectory as a linear combination of radial basis functions

r(x) =
N

∑
i=1

vvvr
i Ψi(x)

∑
N
j=1 Ψ j(x)

. (22)
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For each dimension of vvvr
i =
[
vr

i,1,v
r
i,2,v

r
i,3

]T
, the application of locally weighted regres-

sion results in the following least-squares optimization problem

min
vvvr

l

NumEx

∑
i=1
‖XXX ivvvr

l −rrri,l‖2K(sss,sssi), l = 1,2,3, (23)

where K is the weighting kernel (see below) and

rrri,l =
[

ri,1,l , . . . , ri,Ti,l
]T

, (24)

vvvr
l =

[
vr

1,l , . . . , vr
N,l
]T

, (25)

XXX i =



Ψ1(xi,1)

∑
N
j=1 Ψ j(xi,1)

· · ·
ΨN(xi,1)

∑
N
j=1 Ψk(xi,1)

...
. . .

...
Ψ1(xi,Ti)

∑
N
j=1 Ψ j(xi,Ti)

· · ·
ΨN(xi,Ti)

∑
N
j=1 Ψ j(xi,Ti)

 . (26)

To put more emphasis on the data associated with queries closer to the current query,
we chose the tricube weighting kernel K [16] for locally weighted regression

K(d) =

{
(1−|l|3)3 if |l|< 1
0 otherwise

(27)

The tricube kernel has finite support and continuous first and second derivatives. Thus,
the first two derivatives of the generalization function G f m are also continuous. Fur-
thermore, the computational complexity of the optimization problem (23) is reduced
through this choice of K because the force-torque profiles for which K vanishes do
not influence matrices XXX i. This makes the system matrix associated with the objective
function (23) banded.

Many possible choices for the weighting kernel K exist, see [16] for other possibil-
ities. As discussed in this paper [16], the choice of the weighting kernel is usually not
critical for generalization accuracy. In our experiments we obtained good performance
with the selected kernel.

Note that in the above LWR formulation only those i for which K(sss,sssi) > 0 affect
the result. Since K(sss,sssi) > 0 is true only in the local neighborhood of sss, the relevant
difference vectors rrri, j remain small, assuming that the orientation trajectories smoothly
transition between each other. Since the rotation vector representation contains no
singularities in the neighborhood of rrr = 0, the optimization problem (23) avoids any
critical areas where the rotation vector representation becomes discontinuous. Thus the
optimization problem (23) remains well defined.

To control the robot, we need to transform the generalized difference trajectory
back to the orientational part of a CDMP. This transformation can be calculated by
multiplying the generalized rotation difference trajectory (22) with the quaternion DMP
closest to the query point, i. e. qDMP

k

qDMP(x) = exp(r(x))∗qDMP
k (x). (28)
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While we could apply Eq. (28) directly to control a robot, it is usually advantageous
to first sample the resulting orientation trajectory, typically at robot servo rate, and
compute new weights wwwo from the sampled data using Cartesian DMP estimation tech-
niques developed in [25]. This way we can exploit all advantages of DMPs, which is
not possible with representation (28).

The example goal orientations as well as the duration of movements are directly
available in the data. They are given as

gggo
i = qqqi,Ti

, τi = ti,Ti − ti,1, i = 1, . . . ,NumEx. (29)

Given a new query point sss and using LWR, the time duration can be generalized as
follows

τ =
NumEx

∑
i=1

K(sss,sssi)τi

∑
NumEx
j=1 K(sss,sss j)

. (30)

Since we cannot add unit quaternions, a different method has to be used to generalize
goal orientations. One possibility is to solve the following optimization problem

min
gggo∈S3

NumEx

∑
i=1

d(gggo,gggo
i )K(sss,sssi), (31)

where d is a metric on a 4-D unit sphere defined in (48). Optimization problem (31)
is nonlinear and can be solved using iterative methods such as Newton’s method. The
iteration process can be initialized with the following approximation

qqq0 =
∑

NumEx
i=1 K(sss,sssi)gggo

i

‖∑
NumEx
i=1 K(sss,sssi)gggo

i ‖
. (32)

3.4. Generalization of force-torque profiles
The computation of generalized weights vvvF

k , vvvM
k is based on the training data set

(2) – (3). It is equivalent for all six force-torque dimensions, therefore we here focus
on one dimension of force profile (12), with the corresponding weights denoted as
vvv = [v1, . . . ,vN ]

T . Using (2) and (12), we obtain the following expression for the data
stemming from the i-th demonstration:

F(xi, j) =
∑

N
k=1 vkΨk(xi, j)

∑
N
k=1 Ψk(xi, j)

, j = 0, . . . ,Ti, (33)

where the phases xi, j are defined by the phase equation (8). Thus they are given by
xi, j = exp(−αxti, j/τi). For each training set i, Eq. (33) is a system of linear equations
in vk. Therefore it can be written in a matrix form

fff i =XXX ivvv, (34)

with the system matrix XXX i defined as

XXX i =


Ψ1(xi,1)

∑
N
k=1 Ψk(xi,1)

· · ·
ΨN(xi,1)

∑
N
k=1 Ψk(xi,1)

...
. . .

...
Ψ1(xi,Ti)

∑
N
k=1 Ψl(xi,Ti)

· · ·
ΨN(xi,Ti)

∑
N
k=1 Ψk(xi,Ti)

 . (35)

11



Note that these matrices are dependent only on the distribution of phase, not on the
recorded force and torques. The left and right hand side vectors in Eq. (34) are defined
as

fff i =


F(xi,1)

...
F(xi,Ti)

 , vvv =


v1

...
vN

 . (36)

By applying locally weighted regression [16] we can generalize the training data
(2) and (3) to a new query point sss by solving the following least squares optimization
problem for each dimension of the force-torque profile

min
vvv

NumEx

∑
i=1
‖XXX ivvv− fff i‖2K(‖sss−sssi‖), (37)

where K is the weighting kernel that defines the influence of each training set. Just like
in case of orientations, we chose a tricube weighting kernel to put more emphasis on
the nearby data points.

4. Adaptation of Generalized Contact Trajectories

While executing the generalized contact movements represented by CDMPs and
the accompanying force-torque profiles, the resulting forces and torques can differ from
the ones computed by the generalization method. If these discrepancies are significant,
they could cause the task execution, in our experiments PiH, to fail or even damage
the workpieces or the robot. Therefore, the generalized trajectories have to be adapted
during the execution. As proposed in the work of Abu-Dakka et al. [28], an error
feedback calculated from the actual and demonstrated forces and torques can be used
to modify the robot movement, thus reducing the discrepancies between the desired and
actual forces and torques. In our work, we apply this method with the modification of
how error feedback is calculated. Instead of using the demonstrated forces and torques
as references for adaptation, the error feedback is calculated using the discrepancies
between the generalized and actual forces and torques that arise during the execution.
In other words, the generalized forces and torques are used as references for adaptation
of the generalized position and orientation trajectories. The error feedback eeep(x) ∈ R3

for positions and eeeq(x) ∈ R3 for orientations is thus calculated as follows

eeep(x) = qqq(x)∗ (FFFgen(x)−FFFmes)∗qqq(x) (38)

eeeq(x) = qqq(x)∗ (MMMgen(x)−MMMmes)∗qqq(x) (39)

where FFFgen and MMMgen are the generalized force and torque at phase x, respectively, FFFmes

and MMMmes the current measured force and torque, respectively, while qqq(x) is the unit
quaternion specifying the current orientation of the robot’s tool. Note that ∗ denotes
a quaternion product and that 3-D vectors are interpreted as quaternions with zero
scalar component in (38) and (39). Using this error feedback, the underlying CDMP
specifying the desired position and orientation can be modified and optimized using
iterative learning control [28], which ensures successful and optimal execution of the
contact skill.
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5. Experimental Evaluation

We evaluated the developed methods in several experiments with simulated and real
data. The real experiments were conducted with KUKA LWR-4 robot arm. We used
the KUKA provided Fast Research Interface [40] to realize real-time robot control.

5.1. Generalization of CDMPs in simulation

We first describe the results of orientation DMP generalization using simulated
data. We synthesized an example set of 21 minimum jerk SLERP trajectories [41],
with 10 of them shown in red in Fig. 2. All orientation trajectories started at the
same initial orientation and finished at different, but evenly distributed end orienta-
tions. The rotation angles of the final orientations with respect to the initial orientation
were used as query points for generalization. In our simulation test, the 11 orientation
trajectories shown in blue were used as training data for generalization at intermediate
queries (rotation angles) using the generalization approach described in Section 3.3.
The intermediate queries were the same rotation angles at which the other 10 orienta-
tion trajectories (not used to define a training data set) were calculated. The results are
shown in red in Fig. 2.

For testing the accuracy of the generalization method, we calculated the difference
between the LWR generalized trajectories (red in Fig. 2) and the simulated minimum
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Figure 2: Synthesized database for generalization between minimum jerk SLERP trajectories, represented
as quaternions qqq = v +uuu. The simulated trajectories are shown in blue, while the resulting generalized
trajectories are shown in red.

13



jerk SLERP trajectories synthesized at the same intermediate query points as the gen-
eralized orientation trajectories. The results can be seen in Fig. 3. The calculated
difference using formula (48) is very small for most of the trajectories (represented in
blue), although the generalization accuracy closer to the edge of the database is lower
(represented in red and green). This outcome is consistent with the results presented in
the paper of Ude et al. [1].

5.2. Generalization of CDMPs with a real robot

After the initial results from simulation had turned out promising, we carried out an
experiment on a real robot. The challenge was to turn a valve, shown in Fig. 4, to the
desired final configuration from any starting angle. The recorded trajectories compared
to the simulated ones were not as smooth, which made the task of generalization more
difficult.

0 1 2 3 4 5
t[s]

0

2

4

6

d

×10-3

One Edge
Central 8
Other Edge

Figure 3: The difference between the LWR generalized trajectories and the corresponding minimum jerk
SLERP trajectories at the same queries, calculated using formula (48). The errors of the two trajectories
generalized close to the edge of the database are depicted in green and red, while all other 8 are depicted in
blue.
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Figure 4: Valve (left) for testing the proposed orientation generalization method on a real robot. Blue color
indicates the demonstrated example queries, while the red arrows show the example queries for generaliza-
tion. The snapshots on the right show the robot arm at angles ϕi = [−68.75◦,−31.25◦,18.75◦,68.75◦]
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Figure 5: The database of real orientation trajectories (blue) and the generalized trajectories (red).

To build the training set for generalization, a human operator demonstrated 13
movements, all starting at different initial angles and ending in the same configura-
tion. The starting angles [−75◦,−62.5◦,−50◦,−37.5◦,−25◦,−12.5◦,0◦,12.5◦,25◦,
37.5◦,50◦,62.5◦,75◦] are shown with blue colored arrows in Fig. 4. They were saved
as queries si = ϕi.

The recorded database of valve turning movements, shown in blue in Fig. 5,
was used to synthesize new movements with the desired initial angle of the valve
used as query for generalization. The generalization results for all the intermedi-
ate queries [−68.75◦,−56.25◦,−43.75◦,−31.25◦,−18.75◦,0◦,18.75◦,31.25◦,43.75◦,
56.25◦,68.75◦] are shown in red in Fig. 5.

The real-world generalization results are comparable to simulation results.
Just as in simulation, we confirmed the accuracy of the generalization process on

the real robot. The results are presented in Fig. 6. The differences were calculated us-
ing leave-one-out cross-validation method, where each trajectory saved in the database
was left out and generalized to that specific query point. With this method we calcu-
lated the difference between the generalized trajectory and the demonstrated trajectory
stored in the training set using Eq. (48). The human demonstrated trajectories are not
as uniformly distributed and smooth as the ones generated in simulation, therefore the
discrepancies are larger compared to the results from Fig. 3. Note, however, that the
differences remain small and most of the time below 0.01 rad≈ 0.57◦.

Another issue that affects the accuracy of generalization is the density of the train-
ing data. The results of [1] show that the accuracy of generalization in general increases
with the density of the training data. However, since the transformations Gp and Go,
which are respectively provided in Eqs. (14) and (15), between the query points and
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Figure 6: Difference between the LWR generalized trajectories and the demonstrated database trajectories at
the same query points, calculated using leave-one-out cross-validation and distance metrics (48). Difference
of the edge trajectories are depicted in green and red, all other trajectories are shown in blue.

Figure 7: Experimental setup for testing the generalized contact skills.

the generalized trajectories are highly nonlinear, it is not possible to provide general
guidelines for the required density of training data because it is highly task-specific.

5.3. Generalization of force-torque profiles
For implementation and testing of the force-torque generalization approach on a

real robot, we equipped KUKA LWR-4 robot arm with a specialized gripper for grasp-
ing of round pegs. Although KUKA LWR-4 has a torque sensor at every joint, we
mounted ATI Gamma SI-130-10 force-torque sensor on the wrist of the robot to ob-
tain more accurate measurements of net forces and torques acting on the robot’s end-
effector during task demonstrations (see Fig. 7).

As a prototypical assembly task, Peg-in-hole (PiH) assembly was selected for ex-
perimental evaluation. We tested the PiH assembly with round pegs and holes, where
the diameter of the peg di and the depth of the hole hi varied. Thus a two-dimensional
query space was formed, sssi = [di,hi]

T , i = 1, . . . ,NumEx. A wooden base object com-
prising 10 holes of different diameters and a constant depth of 250 mm was constructed
to carry out experiments. The diameter of the holes varied from 24 mm to 51 mm in
3 mm increments with a tolerance between the hole and the peg of less than 1 mm. In
order to obtain holes with different depths, each hole with small pegs was filled with
small pegs of height 20 mm.
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Figure 9: Graph shows the quaternion qqq = v+uuu ori-
entation trajectory database for a single diameter of
the hole at 10 depths shown in blue and the gener-
alized trajectories shown in red. The trajectories are
offset for a clear comparison.

Using kinesthetic guiding we obtained trajectories at 10 different hole diameters
di ∈ [24,27,30,33,36,39,42,45,48,51] mm and for each diameter at 10 different depths
of the hole hi ∈ [0,−20,−40,−60,−80,−100,−120,−140,−160,−180] + 250 mm.
An example database for a single hole at 10 depths is presented in Fig. 8 for posi-
tion and Fig. 9 for orientation trajectories. Thus altogether we acquired 100 training
trajectories. The measured forces and torques were in general increasing according to
the diameter of the hole (see Fig. 10 and 11). It is evident from these figures that the
measured force-torque profiles continuously transition between each other, which is
important for generalization.

The generated training data were used to generalize the PiH assembly to new po-
sition and orientation trajectories (see Section 3.3) and new force-torque profiles (see
Section 3.4) at the desired intermediate queries. The resulting movements were ex-
ecuted using the adaptation algorithm described in Section 4 and reference [28], with
generalized force-torque profiles used as a reference for adaptation. Without adaptation
the PiH operation often cannot be performed successfully. To evaluate the effective-
ness of the procedure for the generalization of force-torque profiles, we also executed
the adaptation algorithm with the nearest neighbor force-torque profile as reference in-
stead of the generalized force torque-profile. Here criterion (17) was used to determine
nearest neighbor force-torque profiles. Note that it is not possible to use the nearest
neighbor position and orientation trajectories as in this case the PiH assembly can-
not be successfully accomplished. On the other hand, it is possible to use the nearest
neighbor force-torque profiles if they are synchronized to the generalized position and
orientation trajectories through the common phase. Thus for evaluation purposes, each
PiH assembly was executed with the proposed adaptation algorithm twice; once with
the generalized and once with the nearest neighbor force-torque profile as reference.

The following values were estimated for analysis:
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Table 1: Comparison of median magnitude of force, torque, position, and orientation differences between the
values measured during the adaptation and reference values (see Eqs. (40) – (43)). The last row shows the
average difference between the generalized execution time (30) and the execution time of the PiH operation
with adaptation, where the generalized and nearest neighbor force-torque profiles where respectively used as
reference for adaptation.

PiH with

Generalized
force-torque

reference profiles

Nearest neighbor
force-torque

reference profiles

Median magnitude
of force

differences [N] 3.714 4.294

Median magnitude
of torque

differences [Nm] 0.5892 0.6977

Median magnitude
of position

difference [m] 0.0027 0.0092

Median magnitude
of orientation

difference [rad] 0.00083 0.00084

Average time
difference [s] 0.3792 0.5242

• The difference between the generalized execution time (30) and the execution
time of PiH assembly with adaptation (Fig. 12).
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• The magnitude of differences between the generalized / nearest neighbor force-
torque profiles and the measured forces and torques (Fig. 13 and 14) during
adaptation.

• The magnitude of differences between the generalized and adapted position and
orientation trajectories.

In total 90 experiments at intermediate queries (depicted with star in Fig. 12, 13,
and 14) were conducted. The results are presented in Table 1 and show the medians
of average magnitude of differences calculated from all executions with adaptation
at intermediate queries. For each query, the average magnitudes were calculated as
follows

e f =
1
T

T

∑
i=1
‖FFF ref

i −FFFmes
i ‖, (40)

em =
1
T

T

∑
i=1
‖MMMref

i −MMMmes
i ‖, (41)

ep =
1
T

T

∑
i=1
‖pppref

i − pppadapt
i ‖, (42)

eq =
1
T

T

∑
i=1
‖d(qqqref

i ,qqqadapt
i )‖. (43)

where FFF ref
i and MMMref

i represent the reference force-torque profiles (i. e. generalized and
nearest neighbor) and FFFmes

i and MMMmes
i the measured forces and torques during adapta-

tion. pppref
i and qqqref

i respectively represent the generalized positions and orientations and
pppadapt

i and qqqadapt
i the adapted positions and orientations. T is the number of sampling

times. Distance metrics d is defined in Eq. (48).
All differences between the execution times of the PiH assembly with adaptation

and the generalized execution time according to Eq. (30) at intermediate queries are
shown in Fig. 12. Note that if the PiH assembly is executed with generalized force-
torque profiles as reference for adaptation, it is most cases executed faster than when
nearest neighbor force-torque profiles are used. The reference trajectory duration in
these experiments was around 2 seconds, thus the differences in execution time are
quite considerable. Table 1 provides more evidence that PiH execution with adaptation
using generalized force-torque profiles as reference is faster than the PiH execution
with adaptation using the nearest neighbor force-torque profiles as reference.

Fig. 13a shows all average magnitudes of force differences (40) acquired at in-
termediate queries by DMP adaptation with the generalized force-torque profiles as
reference for adaptation. When compared to Fig. 13b, where the same values acquired
by adaptation with the nearest neighbor force-torque profiles are shown, it can be seen
that the average magnitudes of force differences are smaller in the former case. The
same can be observed with torques depicted in Fig. 14a and 14b, where Eq. (41) was
used to calculate the average differences. Average magnitude of position and orien-
tation adaptation is shown in Table 1, showing that the average amount of adaptation
was smaller when executing trajectories with generalized forces and torques used as
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Figure 12: Comparison of execution times differences. The training queries are shown in green, the interme-
diate queries in red.

reference. Hence the generalization procedure provides force-torque profiles that re-
quire less adaptation. The adaptation amounted to less than 1 millimeter in most cases,
which was within the tolerances of the objects used in the experiments. The imperfec-
tions in the wooden experimental objects caused the two maximums in Figs. (13a and
13b), but the generalization and adaptation procedure could cope with this issue.

Fig. 15 illustrates the differences between when performing the PiH assembly with
adaptation at one example query. As in the previous results, the task was performed
twice, once with the nearest neighbor forces and torques and once with the generalized
forces and torques used as reference for adaptation. The first three graphs show that
the differences between the reference forces and the forces measured during adaptation
are far greater when the nearest neighbor forces were used as reference. A significant
difference can also be noted in the phase evolution, shown in lower right plot in Fig. 15.
The DMP phase stopping mechanism, which causes the movement to slow down when
required for successful adaptation, was much more active in the execution with the
nearest neighbor force-torque profile compared to when the generalized force-torque
profile was used as reference.

These results show that in most cases the generalization of force-torque profiles
with locally weighted regression leads to a faster execution of the task with less adap-
tation than the simpler nearest neighbor approach.

6. Conclusion

In this paper we extended our previous work on task-specific generalization of po-
sition and joint space DMPs [1]. The first contribution of the paper is a new approach
for task-specific generalization of orientation trajectories represented by unit quater-
nions, which was not considered in [1]. The proposed approach also extends our pre-
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Figure 13: Comparison of magnitudes of force differences. The training queries are shown in green, the
intermediate queries in red.
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Figure 14: Comparison of magnitudes of torque differences. The training queries are shown in green, the
intermediate queries in red.

vious work on programming by demonstration of assembly tasks [28] and provides an
entire solution for the generalization of assembly tasks involving contact with the en-
vironment. In the proposed approach, besides position and orientation trajectories also
the demonstrated forces and torques are generalized to enable effective execution and
adaptation of contact skills in different external conditions.

Locally weighted regression (LWR) was utilized as an underlying method for syn-
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Figure 15: Comparison of peg-in-hole executions with adaptation, where nearest neighbor and generalized
forces were respectively used as reference for adaptation. The upper two and the lower left graph show forces
measured during the PiH execution with generalized forces and torques used as reference for adaptation
(solid blue line) and with nearest neighbor forces and torques used as reference for adaptation (solid red
line). The corresponding reference forces are depicted with red and blue dashed lines. The lower right graph
depicts the phase evolution during the execution of the generalized trajectory, first using the generalized
force-torque profile (blue solid line) and second the nearest neighbor force-torque profile (red solid line)
as reference for adaptation. The dashed black line corresponds to an ideal DMP phase without adaptation,
which causes the movement to slow down.

thesizing new Cartesian space DMPs and force-torque profiles. In LWR nearby data
points are given higher emphasis than the distant ones, which results in local mod-
els. This is often advantageous because global models are in general more difficult to
compute and can lead to complex optimization problems. The proposed generalization
approach for orientation trajectories resolves the problem of maintaining the norm of
unit quaternions in all computational steps.

In stiff environments generalized trajectories might still require additional adapta-
tions in order to provide a better match between the generalized force-torque profiles
and the actually measured forces and torques. If these discrepancies are too large, the
task execution can fail. By applying a suitable trajectory adaptation method, the gener-
alized trajectory can be modified so that the generalized forces and torques match the
ones arising during the task execution better. We confirmed in our experiments that the
execution time of the generalized contact skill can be improved by on-line adaptation
of the generalized position and orientation trajectories.

The proposed approach was tested with the KUKA LWR-4 arm, which is impedance
controlled. This was important to support our experiments. In simulation the orienta-
tion training data was perfectly smooth and the generalization method produced good
results. When testing the approach with the real training trajectories obtained by kines-
thetic guiding, the results were comparable. Thus the proposed approach can cope with
human-generated training data. The experimental results of PiH assembly show that a
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generalized force-torque profile provides an effective reference profile for adaptation
at intermediate query points within the training space.

In our future work we will investigate the possibility of enhancing the initial train-
ing set with automatically acquired trajectories and force-torque profiles using ap-
proaches like iterative learning control and reinforcement learning. This way we expect
to automate the construction of the training data and the robot will become able to au-
tonomously improve its performance when executing assembly tasks.

Appendices
A. Auxiliary Math for Cartesian Space DMPs

A quaternion qqq = v+uuu consists of a scalar part v ∈ R and vector part uuu ∈ R3. A
quaternion multiplication (denoted by ∗) is defined by

qqq1 ∗qqq2 = (v1 +uuu1)∗ (v2 +uuu2) = (v1v2−uuuT
1uuu2)+(v1uuu2 + v2uuu1 +uuu1×uuu2). (44)

The set of all quaternions with the above multiplication forms a non-commutative divi-
sion algebra. Conjugation of quaternions is denoted by a bar and defined as qqq= v+uuu=
v−uuu. The norm of a quaternion is defined as

‖qqq‖=
√

qqq∗qqq =
√

v2 +‖uuu‖2 (45)

The set of quaternions with unit norm forms a sphere S3 in R4. It can be shown that the
product of two unit quaternions is a unit quaternion, thus unit quaternions form a mul-
tiplicative group. They can be used to represent the orientation in Cartesian space. This
is a 2-to-1 representation as unit quaternions qqq and −qqq represent the same orientation.

To derive CDMP equations in Section 3.1, we need to connect quaternion derivative
q̇qq(t) and angular velocity ωωω(t). This relation is given by

q̇qq =
1
2

ωωω ∗qqq. (46)

In the above equation angular velocity ωωω is treated like a quaternion with a zero scalar
component. By comparing (46) and (7) we obtain ηηη = τωωω , thus ηηη is a scaled angular
velocity.

The quaternion logarithm log : S3 7→ R3, which is one of the operations in (6), is
defined as

log(qqq) = log(v+uuu) =


arccos(v)

uuu
‖uuu‖

, uuu 6= 0

[0,0,0]T, otherwise
. (47)

The quaternion logarithm log(qqq2 ∗qqq1) can be interpreted as a difference vector between
two unit quaternions qqq1 and qqq2. It can be used to define a distance metrics on S3 [42]

d(qqq1,qqq2) =

{
2π, qqq2 ∗qqq1 =−1+[0,0,0]T

2‖ log(qqq2 ∗qqq1)‖, otherwise
(48)
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The logarithmic map (47) is injective if we limit its domain to S3/{−1+[0,0,0]T}. Its
inverse, the exponential map exp : R3 7→ S3, is defined as

exp(rrr) =


cos(‖rrr‖)+ sin(‖rrr‖) rrr

‖rrr‖
, rrr 6= 0

0, otherwise
(49)

If we limit the domain of the exponential map to ‖rrr‖ < π and of the logarithmic map
to S3/{−1+ [0,0,0]T}, then both mappings become one-to-one, continuously differ-
entiable and inverse to each other.

The exponential map is used to integrate Eq. (7). Given the orientation qqq and
angular velocity ωωω(t) at time t and assuming that angular velocity is constant on time
interval [t, t +∆t], we can calculate the orientation at the next integration time t +∆t as
follows

qqq(t +∆t) = exp
(

∆t
2

ωωω

)
∗qqq(t) = exp

(
∆t
2τ

ηηη

)
∗qqq(t). (50)

Other equations defining a CDMP, i. e. Eq. (4) – (6) and (8), should be integrated using
standard Euler integration [25]. A more in-depth theoretical description of quaternions
and orientation representation by unit quaternions is provided in the book of Morais et
al. [39].
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