
Knowledge acquisition through human
demonstration for industrial robotic assembly

Timotej Gašpar, Miha Denǐsa and Aleš Ude

Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
{timotej.gaspar, miha.denisa, ales.ude}@ijs.si

Abstract. With the ambition to introduce robots into assembly lines,
not suitable for classical automation, the ease of robot programming is
becoming more significant then ever. This paper proposes using vari-
ous approaches for gaining knowledge from human demonstrations. This
knowledge is applied to perform assembly tasks in a industrial robotic
cell. Real industrial use case is used for evaluation of proposed ap-
proaches. It shows their viability and presents different scenarios which
call for different approaches of learning and execution of assembly tasks
and its subsets.

Keywords: Learning by Demonstration, Motion Generation, Reconfig-
urable Robotics, Industry 4.0

1 Introduction

As more and more large enterprises adopt robots to automate their production
lines, classical automation is reaching its saturation point. In order to further
increase the productivity of the industrial sector, automation needs to expand
into previously untapped areas. Classical automation is challenging to introduce
in small to medium enterprises (SMEs). Main hurdles with automation of pro-
duction lines in SMEs are: small batches of products, variability of products
or a family of products, no experts on site, and funding limits for automa-
tion investments. Another aspect of robotics, which is being introduced into
industrial environments, is collaborative robotics. To reduce the need for ex-
perts and make collaborative robots more viable in industrial setting, the ease
of (re)programming a robot for a new task is paramount. To ensure the ease of
learning assembly tasks, human demonstration can be used to (re)program the
robot. In addition, the need for on-site experts is removed, as relatively small
amount of expertise is needed for human demonstration.

A popular approach for acquiring new sensorimotor knowledge is program-
ming by demonstration (PbD) [1–3], where a robot observes a human performing
a task. These movements can be observed using a marker based system [4, 5],
vision systems with RGB-D [6] or stereo cameras [7]. Alternatively, the human
can physically move and guide the robot, using the approach called kinesthetic
guidance [8, 9]. If the movement is captured through kinesthetic guidance, it is



2 Gašpar et. al.

already adapted to the robot dynamics and kinematics. The movements, kines-
thetically captured in joint space, also preserve the configuration of the robot.
Beside classic approaches for point to point motion generation, we also propose
using Dynamical Movement Primitives (DMPs) [10–12] to encode a full demon-
strated trajectory and store it as a set of parameters.

In the next section we present multiple approaches to extract knowledge
from human demonstrations. In addition to kinesthetic guidance, we propose to
use an alternative method to ease the process of assembly demonstration. In
Section 3 we present various robot trajectory generators. In order to transfer
gained knowledge to the robot, several motion generation schemes are used.
Section 4 tackles evaluation of proposed approaches in a real industrial use case.
A reconfigurable robotic work cell, described in our previous work [13], is used
as an evaluation environment. The evaluation serves as a proof of concept and
shows the feasibility of proposed approaches.

2 Data acquisition

This section presents proposed approaches for data acquisition. While kinesthetic
guidance and joystick control can be used for moving the robot, custom button
interface is introduced to ease the process of demonstration.

2.1 Kinesthetic guidance

Traditional robot programming approaches require the user to guide and pro-
gram the robot with its controlling interface. By handling either a touchscreen
or a joystick, the user moves the robot to a desired position and defines the type
of motion to that configuration. This method turns out to be relatively slow and
requires a certain proficiency in robot handling. For these exact reasons mod-
ern robots allow for kinesthetic guidance out of the box. Kinesthetic guidance
proves to be a considerably more intuitive approach to move the robot during
the programming phase.

Our setup consisted of two Universal Robot UR10 arms where kinesthetic
guidance is by default implemented with the so called “Gravity Compensation”
mode. This kind of control can be achieved by taking the dynamic model of a
robot:

τuτuτu = Ĥ(q)u + Ĉ(q, q̇)q̇ + B̂f (q̇) + ĝ(q) (1)

τττu represents the controlled torques in the robot joints, u is the desired control
signal to be regulated, q is the vector of robot joint angles, while Ĥ(q), Ĉ(q, q̇),

B̂f (q̇) and ĝ(q) represent the estimated inertia, Coriolis, friction and gravity
models, respectively. To achieve kinesthetic guidance we set u to be null. Ad-
ditionally, because of relatively slow robot motions, we can neglect the Ĉ(q, q̇)
term. This results in the following control strategy

τuτuτu = B̂f (q̇) + ĝ(q) (2)



Knowledge acquisition through human demonstration 3

This mode essentially compensates the effects of gravity by estimating the nec-
essary torques in the robot joints with the dynamic model. By applying external
torque τττe the user can guide the robot kinesthetically without any additional
sensing equipment.

2.2 Wireless joystick control

Due to the UR10 robot lack of sensing equipment in the robot joints, the dynamic
model control is based on controlling the torque in the joints by regulating the
electrical current to the servo motors. This results in a poor compensation of
the friction in the joints which consequently requires significant physical effort
to move the robot. It is therefore very challenging to move the robot smoothly
and precisely, which is even more notable when kinesthetic teaching of precise
trajectory is needed.

To cope with this drawback, we developed an interface that allows the control
of the robot in Cartesian space with a wireless joystick. During the development
of the joystick control interface we strove to provide an intuitive experience.

The joystick used was a standard Xbox 360 controller, which is widely sup-
ported on multiple operating systems.

Intuitive control was achieved by mapping the controller’s analogue stick
offsets from its default position to Cartesian space velocities. The user can switch
from controlling translational velocities to rotational velocities. The user can
move the robot with different velocity settings by pressing a button. This ensures
the user to have the option between faster and less precise or slower and more
precise motions.

Fig. 1: A consumer grade joystick in-
terface that we used to perform pre-
cise motions of the robot in Carte-
sian space.

Fig. 2: Custom 3-D printer cover
serving as an interface for assembly
task teaching.

2.3 Custom button interface

To further increase intuitiveness and accelerate data acquisition we developed an
interface with multiple programmable buttons. The interface replaces one of the



4 Gašpar et. al.

covers on the robot and it houses 2 buttons and 2 switches with LEDs (Figure
2). The latter provide a visual reference to the switch’s state. The cover was
developed to provide buttons that can be programmed for different actions de-
pendent on the needs. In some cases the switches toggle gravity compensation,
in others they make an entry of the current joints configuration, pose config-
uration or whole trajectory into the system database. This allows the user to
uninterruptedly record the data needed for the assembly process.

3 Robot Trajectory Generation

Following the acquisition of desired poses and trajectories relevant for an as-
sembly process, the next step is to generate appropriate robot movements. We
can generate trajectories between two known configurations or replay a whole
trajectory previously demonstrated by kinesthetic guidance.

3.1 Point to point movements

In cases where the the motion performed by the robot is relatively simple i.e. the
shortest path from one configuration (joint or Cartesian space) to another, we can
use simple trajectory generation algorithms. In our experiments we extensively
used two such algorithms:

– Joint space motion with trapezoidal speed profile
This trajectory generation algorithm will generate a trajectory in joint space
for the robot to reach a desired final configuration from the initial config-
uration. In this type of movement, the robot reaches the specified desired
maximum speed with constant acceleration.

– Cartesian space straight line & SLERP trajectories following the minimum
jerk velocity profile
This trajectory generation algorithm will generate a straight line trajectory
in Cartesian space with zero initial and final velocities and accelerations in
a manner that minimises the jerk throughout the motion. This algorithm is
particularly useful when the path from the initial to the final pose of the end
effector should follow a straight line. It the context of industrial assembly,
we used this algorithm when approaching objects, picking them up, inserting
them into a workpiece, rotating them into the workpiece, etc.

In most cases, a sequence of point to point movements can be defined relative
to a single point. Instead of demonstrating multiple points that define point to
point movements, a single point can be recorded. The other needed points are
defined relative to this one.

3.2 Free from movement representation

With point to point movements we can carry out most steps in an assembly
process. However, sometimes it can happen that, due to the robot cell configu-
ration, more point to point movements have to be chained just to avoid possible



Knowledge acquisition through human demonstration 5

collisions. This kind of programming requires the user to have some experience in
terms of what poses to chose in order to avoid collisions. To offer the user a more
intuitive approach for for collision free motions we implemented an interface to
record whole demonstrated trajectories.

Through the use of kinesthetic guidance the user can guide the robot along-
side a complex trajectory while avoiding collisions with either the periphery of
the cell or the robot structure itself. In order to minimise and parametrise some
aspects of the recorded trajectories we encode them using Dynamic Movement
Primitives [11]. The representation also provides a method of temporal scaling
which makes it possible to increase or decrease the speed of the execution of a
previously recorded trajectory.

4 Motion strategy evaluation through an industrial use
case

The industrial use case, used for evaluation, is a sub set of a glass mounting
gripper assembly. It consists of several pick-and-place tasks, (inverse) peg-in-hole
actions, positioning of screws, screwing, etc. It was implemented in a modular
and reconfigurable work cell [13] consisting of two UR10 robots, tool exchange
system, modular beam system, etc. While the robots are controlled by a real-time
system using Matlab Simulink Real-Time (SLRT) platform [14], the top software
layer consists of a Robot Operating System (ROS) framework [15], which handles
the communication between the modules of the cell. While all the sub-tasks of the
studied use case use the proposed approaches, just three of them are presented
in this section. They represent different aspects of the whole assembly procedure
and cover the full spectrum of all needed tasks.

As described in Section 2, kinesthetic guidance and joystick control were used
to move the robot during human demonstrations. Kinesthetic guidance was used
to record trajectories in joint space, as well as single robot positions in joint
or task space. The custom button interface was used to ease the demonstration
process, by using its signals as record events. On the other hand, joystick control
was used to record just single poses. Recording whole demonstrated trajectories
through joystick control is not beneficial, as point to point generated motions
exhibit the same behaviour as moving the robot in task space using the proposed
joystick control.

The data acquired was stored in a MongoDB server [16]. To ensure saved
poses and trajectories are available throughout the ROS system we used a ROS
implementation of the MongoDB server.

As mentioned before, three sub-tasks are presented in this section. Each of
them displays the usefulness of proposed approaches.

The first sub-task consists of moving the robot to a so called initial position
in joint space. Moving to this pose is needed when the other robot is executing
a task in a shared workspace. To gain an appropriate pose for each robot’s
initial position, the robot is moved kinesthetically. In order to guide the robot
to a desired joint space configuration, joystick control would not be suitable.



6 Gašpar et. al.

When the robot is at an appropriate configuration, the button interface is used
to store the joint configuration in the database. When the need for an initial
position arises in the assembly process, the joint configuration is read from the
database and joint space motion with trapezoidal speed profile is generated (see
Section 3.1). Video stills of the robot executing this kind of movement can be
seen in Figure 3.

Fig. 3: Sub-task of moving the robot to an initial position. While kinesthetic
guidance was used to record an joint pose, joint space motion with trapezoidal
speed profile was executed to move the robot to the stored pose during assembly.

The second sub-task consist of a precise placement of an object. The robot
must place a metal bushing on a metal shaft, which is already in the press (see
Fig. 4). As this sub-task includes a constraint setting, contact with the envi-
ronment, and precise positioning, kinesthetic guidance would not be suitable.
Joystick control, presented in Section 2, was used to guide the robot to an ap-
propriate position, where the bushing fit on the base. This demonstrated Carte-
sian position, stored in the database, was used to define needed relative points.
Cartesian space straight line & SLERP trajectories following the minimum jerk
velocity profile approach was used to generate point to point movements. As it
produces a straight line in Cartesian space, appropriate robot trajectories were
generated to perform the needed task. Figure 4 shows video stills of the robot
successfully executing this sub-task.

Fig. 4: Sub-task of positioning a bushing on a shaft. Due to a constraint set-
ting, contact with the environment, and precise positioning, joystick control was
needed for demonstrating appropriate robot position. Cartesian space straight
line & SLERP trajectories following the minimum jerk velocity profile were used
to successfully move the robot to the demonstrated point.



Knowledge acquisition through human demonstration 7

The third sub-task consists of activating the press, which is usually done
by a human moving a lever. To automate this sub-task, we used one of the robot
arms to move the lever. For this purpose, a human demonstrator moved the
robot using kinesthetic guidance. With no expert knowledge of the robot and its
surroundings, the human was able to move the robot in such a way to activate
the press. As the whole trajectory is important, Dynamic Movement Primitives
were used to encode it (see Section 3.2). Again, the button interface was used to
mark the start and end of the desired trajectory, and thus ease the process. The
trajectory was then executed during the assembly to effectively use the press.
This can be seen on video stills in Figure 5.

Fig. 5: Sub-task of activating a, usually human operated, press. To successfully
move the lever, kinesthetic guidance was used to demonstrate the appropriate
robot movement. The joint space trajectory was encoded with DMPs. The figure
show the execution of the task by the robot.

All these three example sub-tasks represent different aspect of the chosen in-
dustrial assembly task. Combinations of proposed approaches were used through-
out the whole industrial use-case implementation. They enabled us to success-
fully program the cell from (non-expert) human demonstration and to execute
the presented assembly task.

5 Conclusion

This paper presents various approaches for knowledge acquisition through hu-
man demonstration for the purpose of executing robot assembly tasks. While
kinesthetic guidance is used to demonstrate desired robot poses or whole tra-
jectories, a joystick was integrated for the purpose of precise movements when
demonstrating robot poses. While point to point movements were generated
from demonstrated poses, free form trajectories were encoded as DMPs. Two ap-
proaches for point to point movements were presented: joint space motion with
trapezoidal speed profile, and linear Cartesian space motion with minimum jerk
velocity profile. Evaluation was presented in a form of a real industrial use case
study. It showed that appropriately integrated and executed human demonstra-
tion can be used to program a new industrial assembly task with little expertise
needed. Evaluation showed that different sub sets of the task can require different
approaches of human demonstration and motion execution.



8 Gašpar et. al.

Acknowledgment

This work has received funding from the EU’s Horizon 2020 IA ReconCell (GA
no. 680431) and from GOSTOP programme C3330-16-529000 co-financed by
Slovenia and EU under ERDF.

References

1. C. Breazeal and B. Scassellati, “Robots that imitate humans,” Trends Cogn. Sci.,
vol. 6, no. 11, pp. 481–487, 2002.

2. R. Dillmann, “Teaching and learning of robot tasks via observation of human
performance,” Robot. Auton. Syst., vol. 47, no. 2, pp. 109–116, 2004.

3. A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming by demon-
stration,” in Handbook of Robotics (B. Siciliano and O. Khatib, eds.), pp. 1371–
1394, Secaucus, NJ, USA: Springer, 2008.

4. A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body movements for
humanoid robots by observation,” Robot. Auton. Syst., vol. 47, no. 2, pp. 93–108,
2004.

5. N. S. Pollard, J. K. Hodgins, M. J. Riley, and C. G. Atkeson, “Adapting human
motion for the control of a humanoid robot,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), (Washington, DC, USA), pp. 1390–1397, 2002.

6. J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,
and R. Moore, “Real-time human pose recognition in parts from single depth im-
ages,” Commun. ACM, vol. 56, no. 1, pp. 116–124, 2013.

7. T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based
human motion capture and analysis,” Comput. Vis. Image Und., vol. 104, no. 2,
pp. 90–126, 2006.

8. M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system modulation
for robot learning via kinesthetic demonstrations,” IEEE Trans. Robot., vol. 24,
no. 6, pp. 1463–1467, 2008.

9. M. Denǐsa and A. Ude, “Synthesis of new dynamic movement primitives through
search in a hierarchical database of example movements,” International Journal of
Advanced Robotic Systems, vol. 12, no. 10, p. 137, 2015.

10. A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in cartesian space
dynamic movement primitives,” in IEEE International Conference on Robotics
and Automation (ICRA), (Hong Kong), pp. 2997–3004, 2014.

11. S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs. optimal control–a
unifying view,” Prog. Brain Res., vol. 165, pp. 425–445, 2007.

12. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynami-
cal movement primitives: learning attractor models for motor behaviors,” Neural
Comput., vol. 25, no. 2, pp. 328–373, 2013.

13. T. Gašpar, B. Ridge, R. Bevec, M. Bem, I. Kovač, A. Ude, and Z. Gosar, “Rapid
hardware and software reconfiguration in a robotic workcell,” in 18th International
Conference on Advanced Robotics (ICAR), pp. 229–236, 2017.

14. “Simulink Real-Time - Simulink - MATLAB & Simulink.” https://www.
mathworks.com/products/simulink-real-time.html. Accessed: 2017-03-16.

15. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA Workshop on
Open Source Software, (Kobe, Japan), 2009.

16. “MongoDB.” https://www.mongodb.com/. Accessed: 2019-02-4.


