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Abstract— Encoding desired motions into dynamic movement
primitives (DMPs) is a common way for generating compact
task representations that are able to handle sensor-based goal
adaptations. At the same time, a robot should not only express
adaptive motion capabilities at planning level, but use also
contact wrench feedback in the adaptation and learning process
of the DMP. Despite first approaches exist in this direction, no
fully integrated approach has been proposed so far. In this
paper, we introduce a new class of admittance-coupled DMPs
that addresses environmental changes by including contact
wrench feedback dynamics into the DMP formalism. Moreover,
a novel iterative learning approach is devised that is based on
monitoring the overall system passivity analysis in terms of
reference power tracking. Simulations and experimental results
with the Kuka LWR robot maintaining a non-rigid contact with
the environment (wiping a surface) are shown for supporting
the validity of our approach.

I. INTRODUCTION
Learning by demonstration (LbD) is a standard way for

enabling robots to perform desired tasks. This can be done
by encoding the desired motion through Dynamic Movement
Primitives (DMPs). However, motion alone obviously does
not contain all relevant information in contact or even
complex manipulation tasks. The desired contact wrenches
play an equally important role. Furthermore, changes in
the environment such as object locations may cause the
encoded motion to become invalid. However, the desired
wrenches may remain valid, in particular if the objects to
be manipulated are still the same ones.

One way to achieve such a behavior would be to fol-
low the trajectory and track forces e.g. via the unified
force/impedance control from [1]. However, this would put
the entire burden of adaptation on the controls level, with the
planing (trajectory) level ignoring any changes in the actual
task. This is why in our previous work [2], we introduced
a framework in which the impedance control set-point is
generated by a DMP and modified by an external admittance
controller. This scheme could then be combined with the
unified force / impedance controller.

In this paper, we go a significant step further. In addition
to the standard encoding of desired trajectory dynamics into
a DMP, the introduced admittance dynamics are directly
coupled into the DMP framework, which aims to include
force feedback on trajectory level similar to our previous
approach [3]. With the help of this algorithm we can respect
now both, the encoded trajectory and the desired wrench
profiles at planning level. This leads us to the concept of
reference power. As we will argue throughout the paper the
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Fig. 1: Experimental setup for the evaluation. Non-rigid
contact, i. e., wiping of surface was chosen as the use-case
scenario. The robot adapts its motion based on the observed
passivity.

force feedback helps us to adapt the desired trajectory such
that this task can be successfully executed even though envi-
ronment changes may have occurred. In case it is permanent,
the effect of the coupling term needs to be made permanent,
i.e. it has to be learned. We tackle this task with the help
of iterative learning control (ILC). Specifically, we update
the DMP goal after an iteration in case the coupling term is
activated, which essentially means that the desired wrench
was not well tracked anymore. To perform a meaningful
update, a passivity-based stability criterion observing the
deviation from the reference power is used to drive the sys-
tem back towards more stable regimes. The overall behavior
of the system shows promising experimental results. As is
shown in the experimental part, our algorithm reduces the
force deviation that may occur due to environmental changes,
while stabilizing the system by decreasing the reference
power error. Note that beyond the stability and passivity
analysis we provide for the admittance-based coupled DMP, a
full stability regain analysis of the proposed learning process
is left for future work. Lastly, we would like to mention that
the developed scheme may also be used for robots that only
provide position control interfacing with underlying torque
or current loops.

A. Related work
Several topics of research are combined in the proposed

approach. One is adaptive learning by demonstration. In this
paper we rely on the DMP framework, which is common
in LbD approaches. The DMP framework was thoroughly
explored for different learning and adaptation situations.
For example, for different kinds of adaptation [4], with
reinforcement learning [5], [6], for generalization of motion
[7], for adaptation of motion based on force feedback [3],



[8], etc. We use the coupled DMPs from [3], which couple
force feedback to the position and velocity of the DMP. We
further extend this by combining it with the approach in [4] to
smoothly change the goal, thus facilitating the adaptation of
a complete admittance controller within the DMP structure.

Another topic is learning, which was also thoroughly
explored in robotics, e. g., see [6], [9], [10]. Most related to
our work is the learning of DMP trajectories based on force
feedback. Examples of such are in, for example [11], [12]
or [13]. In the latter the authors combined coupled DMP
adaptation with no-reset iterative learning control (ILC),
however they used simple force feedback. The approach is
somewhat similar to the one proposed in this paper, where we
use the passivity observer feedback signal as the criterion for
learning. ILC uses the information from a previous execution
to update the current execution, and has been extensively
applied in robotics [14], including the no-reset ILC [15].

A major topic of this paper is passivity. As discussed in
the introduction, it essentially defines the system property of
not producing more energy than it receives. While passivity
has found its way into stability analyses much earlier in the
field of network analysis [16], one of its first application
in robotics has been in adaptively controlling manipulators
[17]. When it comes to interaction control, and specially for
impedance control [18], passivity has been proven in regula-
tion (i.e. compliance control) [19]. Nevertheless, impedance
control for motion tracking is proven not to be a passive
behavior [20]. In tele-operation applications the concept of
reference energy has been used [21]. As trajectory tracking
in our paper is implemented via DMPs, its dynamics needs
to be taken into account for overall passivity analysis, and
to the best of our knowledge, this has not been done before.

B. Contributions

The contributions of the present work are as follows.
1) A novel admittance based dynamics embedding, ex-

tending the coupled DMP framework introduced in [3]
to Admittance-coupled DMPs,

2) a passivity analysis of the impedance controlled robot
driven by the Admittance coupled DMP,

3) DMP goal learning based on reference power error
monitoring.

The remainder of the paper is organized as follows. Sec-
tion II provides relevant background, including the basics of
DMPs and the evolution to Admittance-coupled DMPs. This
is followed by the passivity analysis of the system in Section
III in which a passivity criterion is defined. The learning
approach based on current-iteration ILC uses this criterion
as a feedback learning signal in Section IV. Experimental
evaluation in simulation and on the real robot is discussed in
Section V. The overall system applicability, structure and
behavior are discussed. Finally, conclusions are drawn in
Section VI.

II. BACKGROUND

A. Cartesian Impedance Controlled Rigid-body Robot

A Cartesian impedance controlled rigid-body manipulator
with n degrees of freedom in contact with the environment
and with the desired inertia identical to the robots inertia

[20] is describable by the closed-loop dynamics

MC(q)¨̃x+ (CC(q, q̇) +Dx) ˙̃x+Kxx̃ = F ext (1)
x̃ = x− xd, (2)

where q ∈ Rn denotes the link position and x ∈ R6

and xd ∈ R6 respectively denote the actual and desired
pose in Cartesian space. As will be seen in the following,
xd is the output of the coupled DMP. Moreover, F ext ∈
R6 denotes the external wrench applied to the robot, and
MC(q) ∈ R6×6 and CC(q, q̇) ∈ R6×6 are respectively the
robot inertia matrix and Coriolis and centrifugal matrix in
Cartesian space. Finally, Kx ∈ R6×6 and Dx ∈ R6×6 are
the desired stiffness, and damping matrices.

B. Admittance-coupled Dynamic Movement Primitives
Our work is based on the periodic dynamic movement

primitives framework [22]. The original DMP formulation is
given with

τ żd,0 = αz (βz (g − xd,0)− zd,0) + f c(φ), (3)
τ ẋd,0 = zd,0, (4)

where τ = 1/ω defines the frequency of the periodic
movement1 and αz and βz are positive constants. The output
of the DMP is xd,0, with g being the anchor of oscillations
and f c(φ) denotes the periodic forcing term. For an in-depth
explanation of DMPs see [22].

In this paper we use coupled DMPs [3], which include
force feedback within the DMP formulation, coupled to
the velocity of the DMP. Therefore, no additional force
controllers are needed. However, the velocity resolved ad-
mittance control approach defines the position output xa
as ẋa = Dc (F d + F ext), where F d ∈ R6 is the desired
wrench and Dc ∈ R6×6 is a symmetric positive-definite
matrix. To account also for the integral part of the admittance
controller, we add the coupling term also to the goal g,
similar to the approach for changing DMPs in [4]. The final
formulation of the coupled DMP thus becomes

τ żd = αz (βz (g + c− xd)− zd) + f c(φ) (5)
τ ẋd = zd + τ ċ (6)
ċ =Dc (F d + F ext) . (7)

Here ċ is the coupling term, which changes the velocity and
consequently the position output of the DMP. The initial
wiping movement was demonstrated to the system using LbD
method as presented in [23].

III. PASSIVITY ANALYSIS

As an intuitive way to investigate stability, passivity anal-
ysis is applied to the overall system of impedance-controlled
manipulator in contact with environment. Afterwards, the
dynamics of coupled DMP is taken into account and finally
a virtual tank, based on a passivity observer (PO) is designed
to ensure the overall system passivity.

A system with state χ ∈ Rm and the state space model

χ̇ = f(χ,u) (8)
y = h(χ,u), (9)

1We chose the notation with τ for clarity throughout the passivity
analysis.



where u,y with the same dimension, are respectively the
input and output, is said to be passive if there exists a
function (namely Storage function) S : Rm → R+ such
that

S(χ(σ))− S(χ0) ≤
∫ σ

0

uT (t)y(t)dt (10)

for all inputs u : [0, σ] → Rl, initial states χ0 ∈ Rm and
σ > 0 [24]. Consequently a system is passive w.r.t. 〈u,y〉 if

Ṡ ≤ uTy, ∀(χ,u), (11)

where uTy is the input power to system (8)-(9).

A. Passivity of Cartesian impedance controlled robot in
contact with passive environment

Considering a passive environment w.r.t. the pair
〈ẋ,−F ext〉, a storage function Senv can be assumed such
that

Ṡenv ≤ −ẋTF ext. (12)

Moreover, for the Cartesian impedance controlled rigid-
body manipulator with closed loop dynamics (1), a storage
function Sm can be defined as

Sm =
1

2
x̃TKxx̃+

1

2
˙̃xTMC(q) ˙̃x. (13)

It is straight-forward2 to see that

Ṡm = ˙̃xTF ext − ˙̃xTDx
˙̃x︸ ︷︷ ︸

≥0

≤ ẋTF ext − ẋTd F ext. (14)

Now, by introducing Ssys as the storage function for the
supersystem of controlled manipulator and environment such
that

Ssys = Sm + Senv, (15)

and considering (12) and (14), it can be seen that

Ṡsys = Ṡm + Ṡenv

≤ −ẋTF ext + ẋ
TF ext − ẋTd F ext

=⇒ Ṡsys ≤ −ẋTd F ext. (16)

Thus, this system is passive w.r.t. the pair 〈ẋd,−F ext〉, and
the input power is

Pin = −ẋTd F ext. (17)

B. Passivity of the coupled DMP
Re-writing the original DMP (3)-(4) and coupled DMP

dynamics (5)-(6) results in

τ2ẍd,0 + αzτ ẋd,0 + αzβzxd,0 =αzβzg + f c(φ) (18)
τ2ẍd + αzτ ẋd + αzβzxd =αzβzg + f c(φ) + τ2c̈

+ αzτ ċ+ αzβzc. (19)

Subtracting (18) from (19), and defining x̃d := xd − xd,0 it
can be seen that

τ2 ¨̃xd + αzτ ˙̃xd + αzβzx̃d = τ2c̈+ αzτ ċ+ αzβzc. (20)

2For the detailed-proof please refer to [2].

Applying Laplace transformation on (20) results in

(τ2s2 + αzτs+ αzβz)X̃d = (τ2s2 + αzτs+ αzβz)C
=⇒ X̃d = C (21)

where X̃d and C are x̃d and c in Laplace domain. Trans-
forming (21) back to the time domain, it can be deduced
that

xd − xd,0 = c. (22)

Now, inserting (22) into (16), the system of Cartesian
impedance controlled manipulator in contact with envi-
ronment can be proven to be passive w.r.t. two pairs of
〈ẋd,0,−F ext〉 and 〈ċ,−F ext〉, i.e.

Ṡsys ≤ −ẋTd,0F ext − ċTF ext. (23)

Considering (7), the associated power to the port
〈ċ,−F ext〉 can be written as

−ċTF ext = −(F d + F ext)
TDcF ext

= − (F d + F ext)
TDc(F d + F ext)︸ ︷︷ ︸
≥0

+ (F d + F ext)
TDc︸ ︷︷ ︸

ċT

F d

≤ ċTF d, (24)

which shows that passivity w.r.t. the pair 〈ċ,F d〉 results in3

the passivity w.r.t. the pair 〈ċ,−F ext〉. Inserting (24) into
(23) we have

Ṡsys ≤ ċTF d − ẋTd,0F ext. (25)

As a result, the input power considered for the passivity
analysis of the overall system of the coupled DMP and
Cartesian impedance controlled robot in interaction with a
passive environment is defined as

Pin = ċTF d − ẋTd,0F ext. (26)

C. Passivity observer based on reference power trajectory

As mentioned before, the coupled DMP (5)-(7) assigns the
desired pose xd for the impedance controller based on the
original desired pose xd,0 together with desired and sensed
wrenches F d and F ext. In the ideal case, when the desired
wrench profile matches with the real wrench applied by the
robot to the environment, (i.e. F d = −F ext), the coupling
term is zero and the desired trajectory reduces to the original
xd,0, see (7). In this case, according to (26), the input power
to the system in the ideal case is

P †in = ẋTd,0F d. (27)

Considering P †in as the desired power profile to the main
system, a passive reference system can be assumed with
a storage function S† that provides the main system with
the required power P †in. Thus, the reference system can be

3In fact, the coupling signal has acted like a damping system with
dissipation power (F d + F ext)TDc(F d + F ext).



Fig. 2: Depicted overall system consisting of impedance controlled robot in interaction with a passive environment, coupled
DMP that provides the impedance control with the desired pose, reference energy provider and passivity observer. Passive
subsystems with their respective storage functions are depicted by ellipsoids.

assumed to be passive w.r.t. the same power but with negative
sign:

Ṡ† ≤ −P †in. (28)

Now, based on (25), (26) and (28), an overall system with
the storage function Stot can be considered such that

Stot = Ssys + S† (29)

Ṡtot ≤ Pin − P †in︸ ︷︷ ︸
Pacv

. (30)

Considering this overall system, by ensuring Ṡtot ≤ 0, it
can be deduced that the overall passivity holds when there is
no other input port. Thus, based on this criterion, a passivity
observer (PO) can be designed such that{

Passive Pacv ≤ 0

Non-passive Pacv > 0,
(31)

where

Pacv = Pin − P †in (32)

= ċTF d − ẋTd,0F ext − ẋTd,0F d. (33)

Fig. 2 provides a schematic view of the overall system and
its subsystems. In the following, this criterion will be used
to adapt the trajectories.

IV. UPDATING TRAJECTORIES

In this paper we use Iterative Learning Control (ILC) to
learn the new goal and effectively adapt the motion of the
robot solely with the help of the passivity observer (31).

In general, ILC updates the performance in the next
repetition of the same task based on the considered feedback.
However, in our case we do not use simple, direct feedback
of position or force. In fact, the power signal estimated by
the passivity observer is incorporated. Specifically, we use
ILC to update the DMP goal g in (5) after every repetition
of the periodic task by

gj+1(l) = gj(l) +KP acv,j(l), (34)

where g is the goal of the DMP, l denotes the l-th time
sample, j the iteration of the learning and K a positive
diagonal passivity feedback gain. P acv,j(l) denotes the

power projected in the respective motion directions, which
is obtained from

P acv,j(l) = ċj ◦ F d,j − ẋd,0 ◦ F ext,j − ẋd,0 ◦ F d,j , (35)

where ◦ denotes the Hadamard product. For clarity the de-
sired wrench profile and consequently the trajectory update is
done only in a single direction in the following experiments.
Essentially this means that g, K iand P acv in (34) become
scalar, and P acv can have the same formulation as Pacv taken
from (31).

V. EXPERIMENTAL VALIDATION

The proposed learning setup was tested in simulation and
on a real system. The task was to adapt and learn the
environmental changes upon the passivity observer signal.

Fig. 3: Execution of the demonstrated trajectory (Left),
learning of the changed environment (Right).

A. Simulation results
We first tested the proposed method in simulation. The

task was to adapt and learn the motion of the robot in
order to maintain a constant contact force with a changing
environment mimicking a robot polishing a surface on a
slope. Force feedback was realized with the proposed DMP
coupling framework. In simulation, F ext coming from the
environment was altered sinusoidally.

Fig. 4 depicts the simulation results, where the dashed
black line corresponds to the starting point of the learning.
Each oscillation represents one iteration. It can be seen that
after a couple of iterations the system learns the goal, while
the force error and thus the coupling term of the DMP decay.
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Fig. 4: The first graph shows a simulated DMP and reference
positions. The second and third graphs correspond to the
DMP and coupling term velocities, as for the fourth graph
the simulated environmental forces are show. Vertical black
dashed line depicts the start of learning.

The system passivity is monitored by the passivity ob-
server. Its output (Fig. 5 graph 1) is used as input for the
DMP goal learning. In Fig. 5, it can be observed that Pacv

decreases gradually when the DMP trajectory is adapted due
to a changing environment. One goal of the learning is to
bring Pacv approximately to 0, which means that the input
power to the system Pin matches the reference power P †in.

B. Results on a real system

The experiment was performed with an impedance con-
trolled 7 DOF Kuka LWR robot. The real-world challenge
was to learn a wiping trajectory, based upon observing the
passivity of the system and maintain the desired normal
force Fd = 10 N to the environment. Forces acting on the
robot were measured at the wrist of the robot with an ATI
force-torque sensor, thus providing more accurate Cartesian
force/torque reading compared to the LWR integrated joint
torque sensors. For clarity the experiment was divided into
four sections (Sec.) depicted in Figs. 6 and 7, as well as
in the accompanying video. First the desired wiping motion
was demonstrated to the robot as presented in [12] and
encoded with periodic DMPs. Upon execution, force control
was realized with a DMP coupling term according to (5)-(7).

In Sec.1 of the experiment the demonstrated movement
is executed with no change in the environment, see Fig. 3
(left). The reference force is tracked (Fig. 7 graph 2) and the
passivity is preserved.

Changes in the environment are presented in the form of
lifting one side of the table, depicted in experiment Sec.2
and Fig. 3 (right). Passivity is violated and the system tries
to adapt according to the force error, see Fig. 7.
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Fig. 5: In the first graph the output of the passivity observer
is visualized. The second graph shows the DMP goal during
learning. The vertical black dashed line depicts the start of
learning.

In experiment Sec.3 iterative learning control is applied.
Within five learning cycles the system reduces the reference
power error by improving passivity characteristics, which
also reduces the force error by half, see Fig. 7. However,
note that ILC always demands a trade-off between stability
and accuracy. In the future we will investigate possibilities
of automated tuning of learning parameters for sable and
accurate learning. To maintain overall experimental system
stability we empirically determined K = 0.05.

Finally, Sec.4 visualizes the coupling term, passivity cri-
terion and forces after learning.

VI. CONCLUSION

In this work we presented a new method for learn-
ing force-sensitive robot motion skills. Specifically, our
new admittance-coupled DMP framework incorporates force
feedback on trajectory level for dealing with dynamic envi-
ronmental changes. Furthermore, passivity-based monitoring
of reference power errors is used for learning DMP goals,
helping to cope with permanent changes in the environment.
The proposed method is tested in simulation and on a real
robot, robustly performing a wiping task.

In future work, we will extend the stability analysis of
the adaptive DMP system to cover also the iterative learning
process for stable learning in several repetitions . Moreover,
based on our previous work [2] frequency adaptation of the
DMP can be also combined with the proposed approach.

The proposed method demands tuning of only a few
parameters such as K or Dc. Each one of them has a
significant effect on the system behavior, but also depends
on other aspects such as system architecture and control loop
frequency. For the presented experiments we chose them
empirically. In the future we will also investigate how to
reduce and automatize parameter tuning.
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