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Abstract
When a robot has to imitate an observed action sequence, it must first understand the inherent characteristic features
of the individual actions. Such features need to reflect the semantics of the action with a high degree of invariance
between different demonstrations of the same action. At the same time the machine needs to be able to execute the
action sequence in any appropriate situation. In this study, we introduce a new library of actions, which is a generic
framework for executing manipulation actions on robotic systems by combining features that capture action semantics
with a framework for execution. We focus on manipulation actions and first create a generic representation consisting
of symbolic and sub-symbolic components. To link these two domains we introduce a finite state machine allowing for
sequential execution with error handling. The framework is developed from observing humans which provides us with
a high degree of grounding. To quantitatively evaluate the scalability of the proposed approach, we conducted a large
set of experiments involving different actions performed either individually or sequentially with various types of objects
in different scene contexts.
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1 Introduction

Contemporary research in robotics aims at developing
intelligent robotic systems with human-like skills. To
perform an action with a robot, very often the action
is parameterized and represented by a robotic-compatible
encoding which allows execution. Various ways exist for
doing this, for example one can employ methods for the
imitation of human demonstrated actions by using low-level
continuous sensory-motor data streams (Programming by
Demonstration ”PbD”, Inamura et al (2005); Aleotti and
Caselli (2006); Dillmann et al (2010)). All these methods
have in common that they lead to parametric and, thus,
executable action representations. They directly rely on
’signals’: For example, PbD needs perception signals from
the observed human action and outputs action signals to
reproduce it with the machine. The signal level, thus, allows
action execution but, due to its high degree of detail, easily
suffers from deficiencies by not being able to generalize
action concepts in a meaningful (semantic) way.

This, however, is needed as soon as the robot has
to perform a complex task in different situations. For
this it requires some conceptual understanding of the
required action sequence and it needs to comprehend the
general constraints of the individual sub-actions. Several
frameworks exist that attempt action generalization and/or
action conceptualization. In a nutshell they range from
generalization at the signal (trajectory) level all the way up to
generalization of actions by symbolic (planning-compatible)
descriptors. (for more details see Section 2)

In this paper we focus on manipulation actions because
they allow for a rather rigorous ontological structuring,
the germs of which had been discussed in an older paper

(Wörgötter et al 2013). We will extend this approach
developing a library of manipulation actions which captures
the essence of each action in an abstract way but remains
compatible with robotic execution. To this end we use, as
before (Aksoy et al 2011; Aein et al 2013; Aksoy et al
2015a), the framework of Semantic Event Chains (SECs)
to encode the action-type. SECs just analyze the sequence
of touching and untouching events that happen during an
action to do this, but they can – this way – break the realm
of manipulation actions only down into a few semantically
similar classes (Pastra and Aloimonos 2012; Wörgötter
et al 2013). The here-pursued approach enriches this by
descriptive movement primitives that allow for two things.
On the one hand many more (possibly all single handed)
manipulation actions are now represented by a unique set
of symbolic descriptors, which on the other hand remain
execution-relevant, because, they can at run-time be filled
with the required parameters for performing the different
movements to execute the action. Therefore, this approach
represents one possible way for linking a symbolic action
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representation in a grounded way with its corresponding
signal-level description (derived from observations, hence
from sensory experience). All in all with this framework we
hope to achieve a contribution towards closing, or at least
reducing, the signal-to-symbol gap (Coradeschi and Saffiotti
2003; Krüger et al 2011) in robotics.

Thus, based on prior works from us and others, the main
contribution of this paper is the rigorous structuring of a
large set of manipulation actions into a 3-layer representation
starting from a high, symbolic level via a state machine-like
encoding and ending at detailed movement primitives. We
will show that these representations then can act as library
functions and that they can be parameterized in a situation-
dependent way to execute them either alone or in a sequence.

The rest of the paper is organized as follows. We start
with introducing the state of the art in section 2. We then
continue with a detailed description of action definition and
execution in section 3. The results of many experiments
using this framework are finally shown in section 4 followed
by a discussion in section 5.

2 State of the Art
There exists a large corpus of work on action representation
and execution (Ijspeert et al 2002; Ude 1993; Lee
and Nakamura 2006; Calinon et al 2007; Simmons and
Apfelbaum 1998). Two distinct approaches are commonly
preferred in order to represent and execute actions; one at
the trajectory level (Ijspeert et al 2002), the other at the
symbolic level (Simmons and Apfelbaum 1998). The former
gives more flexibility for an execution-relevant definition of
actions, while the latter defines actions at a higher level and
allows for generalization and planning.

For trajectory level representation there are several well
established techniques: Splines (Ude 1993), Hidden Markov
Models (HMMs) (Lee and Nakamura 2006), Gaussian
Mixture Models (GMMs) (Calinon et al 2007), Dynamic
Movement Primitives (DMPs) (Ijspeert et al 2002; Kulvicius
et al 2012; Luksch et al 2012). With trajectory level
encoding, one can investigate or learn different complicated
trajectories, but it is difficult to use them in a more “cognitive
sense”. Generalization of the observed trajectories is the
main challenge here (and often addressed in different ways
in the above cited papers), since even the same action can be
demonstrated by following various trajectories.

High-level symbolic representations many times use graph
structures and relational representations (e.g. Pardowitz et al
(2007); Ekvall and Kragic (2006)). Alternative methods,
such as Lee et al (2013), describe a syntactic approach
for learning robot imitation by capturing underlying task
structures in the form of probabilistic activity grammars.
These approaches give compact descriptions of complex
tasks, but they do not consider execution-relevant motion
parameters (trajectories, poses, forces) in great detail.

In this work, our high-level action descriptor is based on
the concept of Semantic Event Chains (SECs) introduced
in Aksoy et al (2011) and used also by others (Luo et al
2011; Martinez et al 2014; Yang et al 2013; Vuga et al
2014). SECs are generic action descriptors that capture the
underlying spatio-temporal structure of continuous actions
by sampling only decisive key temporal points derived

from the spatial interactions between hands and objects
in the scene. The SEC representation is invariant to large
variations in trajectory, velocity, object type, and pose used
in the action. Therefore, SECs can be employed for the
classification task of actions as demonstrated in various
experiments in Aksoy et al (2015b) and we have shown in
Aein et al (2013) that human demonstrated actions encoded
by SECs can also be executed by robots, once low-level data
(object positions, trajectories, etc.) are provided.

Many times trajectory-level descriptions of actions, object
properties, and high-level goals of the manipulation were
brought together through STRIPS-like planning (Dillmann
et al 2010; Kunze et al 2011; Beetz et al 2015), resulting
in operational although not very transparent systems. The
approaches in Ahmadzadeh et al (2015); Ahmadzadeh and
Kormushev (2016) attempted to integrate symbolic action
representation and planner with a motor skill learner. The
robot learned the goal of the human demonstrated actions by
using a so-called Visuo-spatial Skill Learning (VSL) method,
which produced symbolic predicates. Such predicates were
directly fed to a standard planner to encode skills in a
discrete symbolic form. This framework also considered
sensorimotor skills, such as the followed trajectory from the
observed action. In contrast to the works in Ahmadzadeh
et al (2015); Ahmadzadeh and Kormushev (2016), we do
not immediately require any additional symbolic planner
since SECs provide a fully observable state sequence. As
long as we are only dealing with straight-forward linear
action sequences, planning is not anymore needed. To show
this here we perform also evaluations on long and complex
human manipulation actions.

Still the problem of how to bring the signal (trajectory)
level together with the symbolic level remains a big
challenge in robotics.

There are also many works concentrating on the
execution of manipulation actions using cognitive agents. In
Yamaguchi et al (2014) a finite state machine was designed
to execute a pouring action. Morante et al (2014) used guided
motor primitives (GMP) to perform painting and cleaning
tasks on a simulated robot. Another approach to deal with the
signal-symbol gap was to combine motion and task planning
such as in the work of Srivastava et al (2014). They generated
trajectories for tasks like pick-up and put-down to solve
problems in different domains. In Ghalamzan et al (2015)
GMM and DMP were integrated to learn robotic tasks from
human demonstrations. In He et al (2015) a manipulation
planning framework was proposed with linear temporal logic
specifications. The system was demonstrated on a simulated
robot to successfully perform some tasks, but the planning
could take a long time as soon as the number of objects
and locations in the environment increases. In Kappler
et al (2015) a decision making approach was proposed to
perform robotic tasks. Here, multi-modal sensor data were
processed to switch between several movement primitives
called Associative Skill Memories.

In Morante et al (2014) execution of actions was proposed
using so-called Continuous Goal Directed Actions (CGDA).
They generated a library of guided motor primitives (GMP)
in joint space of the robot, and later used them in the
execution phase. A simulated robot was introduced to
perform cleaning and painting tasks. In Lioutikov et al
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Figure 1. Levels of action definition. The high-level components are symbolic and close to human language. The low-level
components are in the signal domain. The mid-level fills the gap and makes execution possible. The red numbers refer to the
sections in the text.

(2016) a bimanual cutting task was performed by sequencing
the learned DMPs. Since only position data was used, the
quality of execution depends highly on the placement of
knife in the robot hand.

In Rozo et al (2013) a pouring task was learned by
using parametric HMMs. Also in Yamaguchi et al (2015)
a pouring task was represented, planned and learned from
human demonstration. In this work, pouring of liquids and
granular material was modeled by a finite state machine.

While the existing works show promising results, they are
usually limited in the number of actions and manipulated
objects. One of the main goals of our study is to develop
a generic scheme that allows robots to perform a much wider
variety of actions on various object sets.

3 Methods
As illustrated in Figure 1, our proposed perception-action
framework involves three main levels: high-, mid-, and low-
level action units. To address this we will start with a
detailed description of high and low levels together with
their components. In the very end, the mid-level action unit
that bridges the gap between high- and low-levels will be
introduced. The figure provides in red the section numbers
by which the road-map of this section is represented.

First we will, however, provide a short overview of the
domain in which we operate and also discuss which actions
we have implemented. Then we will describe the framework
using the structure from Figure 1.

3.1 Domain and Actions
In our experiments, we are focusing on tabletop manipu-
lations related to cooking tasks, which can be performed
with a stationary robot. Note, however, that by design the
framework is not restricted to this domain, because the
structuring of all actions in high-, mid- and low-level action-
units allows transferring the same actions also to (e.g.) a
workshop or other tabletop manipulation action domains.

We have analyzed and structured our library of actions for
all 32 manipulation action-types described in Wörgötter et al
(2013), ten of those we are investigating in depth performing
also robotic experiments with them.

Note that action examples are kept simple to be able to
show clearly the belonging trajectories, force, and tactile
patterns (see Figures at the end of the Results section).
The same framework, however, had been used to analyze

long and complex real-world manipulation actions (Aksoy
et al 2017). Hence, this framework can address much higher
levels of scene complexity than shown here.

3.2 High-level Action Definition
In this section we will give a high-level action definition to
extract and encode the semantics of manipulations. Note that
at this level, definitions are mainly symbolic (abstract) and
close to human descriptions.

Take the example of a manipulation action “put a bucket
on a box”. Figure 2 shows some sample frames from human
demonstration. This simple action may be described by a
human as follows:

1. Approach the bucket
2. Grasp the bucket
3. Lift the bucket from table
4. Place the bucket on the box
5. Release the bucket

This description is by no means unique. One could easily
describe the same action in different words, with different
number of steps and details. However, one could still extract
some common and descriptive properties from such a naive
description:

• Property 1: The definition is still valid even if the
manipulated objects are (within reason) altered.

• Property 2: The action (here “put-on-top”) can
be broken into a sequence of smaller sub-actions
(primitives) such as Approach and Grasp.

• Property 3: There are conditions to end one primitive
and start with the next. In the above example these
conditions are not spelled out explicitly.

• Property 4: As humans, we intuitively know how
to perform these primitives, although our exact
movements are only then produced when we see the
objects and are adapted to the scene context while we
perform the action.

The main features that we use here to describe a scene
are the touching relations between its objects. During a
manipulation action, these touching relations change from
some initial state to a final state. A manipulation action is,
therefore, represented by a sequence of changes in touching
relations of the objects.
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Figure 2. A sample human demonstration and robot execution of a put-on-top action are shown to highlight different action
components. At the top, snapshots and segmented images of the human demonstration are shown. Next, a relational graph
sequence is computed. Each graph corresponds to one world state (S1 to S5). The objects in the scene are recognized and their
roles in the action are determined. Abstract spatial relations and their values at each state are shown in the SEC matrix. Here, each
row represents a pairwise object relation such as N and T which stand for Not-touching and Touching, respectively. Action
primitives at each state are shown at the bottom of the SEC matrix. Finally, some snapshots and segmented images of the robot
execution with different objects are shown.

Our approach to represent and execute manipulation
actions with robots has the following fundamental properties:
We introduce a generic high-level definition of actions
which is independent of the manipulated objects in the
action (Property 1), and consists of a sequence of symbolic
primitives (Property 2). The conditions to start and end each
primitive are defined by considering the touching relation
between objects in the action (Property 3). We also store
the default action descriptive parameters (e.g. trajectory) to
execute actions at the high-level with symbolic definitions.
When novel physical objects are observed at each specific
instance of an action, these parameters are adapted according
to the situation to generate the required movements (Property
4).

To fully satisfy these four properties in our high-
level action definition, we benefit from the ontology of
manipulation actions introduced in Wörgötter et al (2013).
This ontology structures human demonstrated manipulation
actions, e.g. putting a bucket on a box, as sequences of
spatio-temporal interactions between objects (including the
manipulator) in the scene by using the concept of Semantic
Event Chains (SECs) presented in Aksoy et al (2011).
This ontology suggests about 30 fundamental and unique
manipulations that allow complex and chained activities, e.g.
“making a salad” or “preparing breakfast”.

The ontology also introduces four constraints on the
definition of manipulation actions, which are stated as
follows:
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Table 1. Object roles defined based on spatial relations. Each role is defined and the constraints on the relations are presented.
Note that main object is defined with regard to the manipulator, unless the action is performed using a tool. In this case, the main
object is defined with regard to the tool.

Object Role Description Relation Constraints

manipulator The object that performs the action Not touching anything at the begin-
ning and the end of action. During
the action, it touches at least one
object.

main The object which is directly in
contact with the manipulator (tool)

Not touching the manipulator (tool)
at the beginning and the end of
action. It touches the manipulator
(tool) at least once.

primary The object from which the main
object separates

Initially touches the main and
makes a T to N transition

secondary The object to which the main object
joins

Initially does not touch the main
and makes a N to T transition

load The object which is indirectly
manipulated

Does not touch the manipulator.
During the action leaves the main
and touches the container or vice
versa.

container The object whose relation with load
changes and it is not the main object

Touches or untouches the load
object

main support The object on which the main
object is located

Touching the main object all the
time

primary support The object on which the primary
object is located

Touching the primary object all the
time

secondary support The object on which the secondary
object is located

Touching the secondary object all
the time

container support The object on which the container
is located

Touching the container all the time

tool The object which is used by the
manipulator to enhance the quality
of some actions

Grasped by the manipulator at the
beginning of action and released at
the end

• Constraint 1: The action is performed by one hand.
This is true for most human actions, since the second
hand is usually used only as a support.
• Constraint 2: The hand touches exactly one object

in the course of the action and does not purposefully
touch other objects in the scene unless the current
action ends.
• Constraint 3: The hand is free at the beginning and at

the end of the action.
• Constraint 4: The action must lead to some changes

in the touching relations between objects and hands
(e.g. human or robot hand). In other words, the hand
must interact with at least one object.

These constraints had been discussed in great detail in
Wörgötter et al (2013) but we would like to add some
important notes here, too: 1) Considering one-handed actions
is to some degree a simplification, because also a supporting
hand can play an active role in a manipulation (for example
in creating counter-forces, etc., see also Discussion section).
2) In case multiple objects need to be manipulated at the
same time (e.g. pushing clutter away) this framework needs
to be extended by a system that can reason about the
semantics of single- versus multi-objects. Such problems
are related to the perceptual binding problem and cannot

be solved without additional mechanisms. 3) Constraint
3 is very important to allow for a rigorous cut between
each two manipulations. Actions that involve tools can be
understood as a broken-up (interrupted) action chain without
violating constraint 3. Constraint 4 is evident without further
comments.

From the first two constraints one concludes that in each
action there are at least two entities: one hand and one object
which is directly touched by the hand. This fact will be used
in section 3.2.1 to define object roles. The second and third
constraints together define actions in a way that they can
not be further split into shorter actions. The last constraint
assures that there is at least one change in the touching
relations. This is essential since the whole framework relies
on the touching relations between objects.

In the rest of this section, we will describe several
components of the high-level action definition which are
required to reach these descriptive properties. We refer the
interested reader to Wörgötter et al (2013) for details of the
manipulation action ontology.

3.2.1 Objects Roles: There exist many objects in the real
world and actions can be performed with different sets of
object combinations. It is, however, not practical to define
a separate action for each possible object set. Instead, as
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Figure 3. Extracted SEC matrices for 10 single atomic manipulation actions. The abstract spatial relation associated to each SEC
row is color coded in which blue and yellow represent Touching (T ) and Not touching (N ) respectively. The gray color shows either
an Absent (A) or a Don’t-care relation. Note that the SEC matrix of three actions push by grasp, poke and push by holding are the
same, whereas their action primitives and parameters are different. In the action Put on top the primary object is the same as the
secondary support, which makes the relations R5 and R8 identical. Similarly, relations R4 and R7 in the action Take down are
identical, since the secondary object is the same as primary support.

stated in Property 1, we represent manipulation actions in a
generic way to make them applicable to any novel object.
For this, we label objects by their roles exhibited in the
action. First of all, recalling Constraint 1, we need an actor
to perform the action, which is here called manipulator. As
stated in Constraint 2, there exists exactly one object that is
directly manipulated by the manipulator. This object is called
main. Optionally, there are other objects in the action, which
interact with the main object in different ways.

The object roles can be better explained in an example. In
the action “putting a bucket on a box” depicted in Figure 2,
the human hand is the manipulator, the bucket which is
directly touched by the hand is the main object. There are
two more objects whose relations with main change in the
action: table and box. The relation of main and the table
changes from touching T to not-touching N . We call such
objects primary or source object. Conversely, the relation of
main and the box changes from not-touching N to touching
T . These objects are called secondary or destination object.

The complete list of object roles with their definitions are
shown in Table 1. Some roles are defined by the changes
in relations, like primary and secondary, while others (like

support objects) are defined based on constant touching
relations. For instance secondary support is the object on
which the secondary object is located. In the above example,
the table plays also the role of secondary support. Note that
not always all relations are needed to define an action.

The role of objects are automatically detected with the
method described in Aksoy et al (2015b), which explores the
temporal evolution of spatial object relations embedded in
SECs.

3.2.2 Semantic Event Chains (SECs): At the highest
symbolic-level, actions are represented by the concept of
Semantic Event Chains (SEC) which captures the essence
of an action by employing computer vision techniques
described in Papon et al (2012); Aksoy et al (2011). A
summary of this process is shown in Figure 2 along with the
put-on-top example. To calculate the SEC representation, an
image sequence of an observed action is first represented by
3D image segments, each of which corresponds to one object
in the scene and is consistently tracked during the action.
Each frame in the sequence is then converted into a graph:
nodes represent tracked segments, i.e. objects, and edges
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Table 2. Abstract relations and their attributes for the action “putting a bucket on a box” shown in Figure 2.

Relation Name Abstract Relation Real Relation Type

R1 R(manipulator,main ) R(hand,bucket) Variable
R2 R(manipulator,secondary ) R(hand,box) Don’t-care
R3 R(manipulator,primary) R(hand,table) Don’t-care
R4 R(main ,secondary ) R(bucket,box) Variable
R5 R(main ,primary) R(bucket,table) Variable
R6 R(secondary ,primary) R(box,table) Constant
R7 R(main ,primary support) - Absent
R8 R(main ,secondary support) R(bucket,table) Variable

indicate the contact relation between a pair of objects. By
employing an exact graph matching method, the continuous
graph sequence is discretized into decisive main graphs, i.e.
“states”, each of which represents a topological change in
the scene. The extracted main graphs form the core skeleton
of the SEC, which is a matrix where rows are the spatial
relations between object pairs in the scene. Each column of
the SEC matrix is interpreted as a state of the scene, which is
the combination of object relations when a new main graph
occurs.

Possible spatial relations in the SEC matrix are Not
touching (N ), Touching (T ), and Absence (A), where N
corresponds to two spatially separated objects, T represents
objects that touch each other. The value A occurs when there
exists no information about the relation, e.g. one object is not
visible in the scene.

Note that the SEC matrix will not unduly grow when there
are many objects in the scene. This is due to the fact that
only the (abstract) objects in Table 1 are considered for any
possible action. Hence, relations between objects that do not
partake in an action do not create additional rows in the SEC.

Thus, in a SEC, the progress of the action from the
beginning to the end is stored in a compact way. In addition,
the SEC matrix is invariant to large variations in trajectory,
velocity, object type, and pose used in the action and,
therefore, remains the same for different instances of the
same action.

Figure 2 shows a put-on-top action from human
demonstration to robot execution. The snapshots of the
demonstration are shown together with the tracked segments
(colored regions) and main graphs. The objects in the
scene and the extracted SEC matrix are shown with the
corresponding states and primitives. At the bottom, the
snapshots and tracked segments of the robot execution are
depicted.

Figure 3 depicts the event chain patterns of different
actions in the library as color coded images. These SEC
patterns are stored as high-level action descriptors in the
action library. Although SEC patterns are very distinctive,
some are semantically identical as in Push by grasp, Poke,
and Push by holding actions. This semantic similarity is
natural since those actions have the same changes in the
touching relation of objects. However, they have different
primitives with different object poses, trajectories, and force
parameters which are not captured by SECs.

This action descriptive object-, trajectory- and force-
information is separately stored as primitives (see Secti-
ons 3.2.4 and 3.3.3).

3.2.3 Abstract Relations: We continue with computing
the spatial relations between each abstract object pair, e.g.
between the manipulator and the main object. Table 2 shows
the abstract relations for the action “putting a bucket on a
box”, previously shown in Figure 2.

Each relation is defined by two attributes, namely type and
value. The type of a relation is determined by the importance
and variation of that relation throughout the action. For
example, for the action in Figure 2, the relation between
the manipulator and the primary is always not-touching and
does not affect the outcome of the action since they are not
directly interacting with each other at all. The type of such
relations is don’t-care.

Other relations, which are crucial for an action, are
categorized as variable and constant relations. For example,
the relation between the manipulator (i.e. hand) and the main
object (i.e. bucket) in Figure 2 is variable since it naturally
alters during the action. The variable relations encode the
dynamics of the action. On the other hand, the relation
between the secondary object (i.e. box) and the primary (i.e.
table) remains constantly touching, and hence is constant.
We note that such constant relations highlight the necessary
pre-conditions to perform an action and any unexpected
change in these constant relations implies a failure of the
action.

3.2.4 Abstract Primitives: As stated in Property 2 in
Section.3.2, an action can be divided into several sub-actions
or primitives. In our approach we define the following
abstract primitives:

• arm move(object): The robot arm moves to a pose
relative to object .

• arm move periodic(): The robot arm moves periodi-
cally.

• arm exert(): The robot arm exerts a force.
• hand preshape(): The robot hand moves to a certain

pre-shape.
• hand grasp(): The robot hand performs a grasp.
• hand release(): The robot hand releases the already

grasped object.

These abstract primitives correspond to the basic functions
of the robot manipulator, which can be implemented in many
different ways. Our way of implementing such primitives
at the lowest motor control level will be presented in
section 3.3.3. The focus of our work is, however, not a
specific implementation, but rather we would like to propose
a way to combine them to seamlessly perform actions. In our
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Table 3. Rules for detecting the spatial relational changes during action execution. Note that ‖manip,Oi‖ represents the
Euclidean distance between manipulator end-effector and position of object Oi. Similarly, ‖Oi, Oj‖ is the distance between objects
Oi and Oj . Oi and Oj are any pair of objects in the scene. contactz means that the sensor sensed a contact in Z axis, while
!contactz means there is no such contact. grasped means the hand has grasped some object, while !grasped means the hand is
empty. The parameters Dij are the distance thresholds to decide whether two objects are touching or not.

Rule Relation Change conditions
vision position force tactile R(manip,Oi)

1 R(manip,Oi) N to T - ‖manip,Oi‖ < D11 - grasped -
2 R(manip,Oi) N to T - ‖manip,Oi‖ < D21 contactz - -
3 R(manip,Oi) T to N - - - !grasped -
4 R(manip,Oi) T to N - - !contactz - -
5 R(Oi, Oj) N to T ‖Oi, Oj‖ < D51 ‖manip,Oj‖ < D52 contactz grasped T
6 R(Oi, Oj) N to T ‖Oi, Oj‖ < D61 ‖manip,Oj‖ < D62 - grasped T
7 R(Oi, Oj) T to N ‖Oi, Oj‖ > D71 ‖manip,Oj‖ > D72 - grasped T
8 R(Oi, Oj) N to T ‖Oi, Oj‖ < D81 - - - -
9 R(Oi, Oj) T to N ‖Oi, Oj‖ > D91 - - - -

approach a state transition in the SEC, i.e. a change from
one column to the next, needs at least one of these unique
primitives. All manipulations that we have analyzed have
a strictly linear sequence of primitives between two sub-
sequent SEC columns. Thus an action is performed when all
of its primitives are sequentially executed while the relations
change according to the SEC matrix.

In Figure 2, the necessary primitives associated with each
column of the SEC matrix of the put-on-top action are
shown. The reason of having multiple primitives is that
sometimes more than one primitive is required to induce
the desired change in the spatial relation. For example,
the combination of arm move(main) and hand grasp()
primitives is necessary to change the relation of manipulator
and main from N to T .

In general, which primitives to choose is determined by the
column-to-column transition in a given SEC. Due to the fact
that we had in total analyzed 32 manipulation action-types,
which on average contain five SEC columns each, we were
faced with only about 150 column-to-column transitions in
total. It was, thus, possible to analyze all of those by hand and
manually define the required primitives for every transition.

Figure 4. Calculating the contact relation with our visual
perception interface. The small red lid is touching the jar and the
yellow cup is on top of the bucket (left). The red lines indicate
the existing touching relations between objects (right)

3.3 Low-level Action Definition
In this section, the abstract components of the high-level
definition are related to their real-world counterparts at
the signal-level. This includes defining objects in the real
world, calculating their spatial relations from the sensor
data, and implementing low-level primitives such that proper
commands are sent to the robot arm and hand control
systems. In the rest of this section, these elements are
described in more detail.

3.3.1 Real Objects: In real world experiments, abstract
objects (i.e. manipulator, main, primary, etc.) are instanti-
ated by real objects in the scene. For the “putting a bucket
on a box” example depicted in Figure 2, these objects are
hand (manipulator), bucket (main), table (primary), and box
(secondary). We need to identify the real-world objects in the
signal space in order to perform the low-level primitives.

For this task, we use our modular computer vision
architecture described in Papon et al (2012), which segments
each object in the scene by employing the color and depth
cues fed from the RGB-D sensor. We further apply the
instance based object recognition method from Schoeler
et al (2014) to identify extracted image segments. By
incorporating the depth information, we also detect the
background segment (supporting surface i.e. Table) which is
in the form of a planar surface.

Once real objects in the scene are detected, we compute
each object pose in signal space. In our work, two pieces
of information are required to represent an identified object:
position and orientation. The position of each object is
computed in Cartesian space. To associate a position to an
object, we model the object with a single point located at
the center of mass. The orientation of objects is defined
as the angle that the main axis of the object makes with
respect to the X-axis of the reference frame. Note that,
we extract the orientation information only for elongated
objects (e.g. cucumber) but not for symmetric objects (e.g.
apple). The abstract pose of the respective object is finally
estimated from its major axis derived by principle component
analysis (PCA). The orientation information is used to find
the parameters of the primitives for elongated objects.

Note that the position of the manipulator, i.e. robot end
effector, is directly calculated from position sensors and the
kinematics of the arm.

3.3.2 Real Relations: The real relations are the values of
relations between pairs of objects in the scene. To detect
these values, we use a combination of proprioceptive (e.g.
position) and exteroceptive (e.g. tactile, force, and vision)
sensors.

When it comes to detecting object relations, there are
three phases: before, during, and after the action. In the first
and last phases, the only source of information is the vision
interface, which essentially computes the Euclidean distance
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Table 4. Rule consideration for detecting spatial object relations (See Table 3) and Figure 3.

Action \ Relation R1 R2 R3 R4 R5 R6 R7 R8

Pick and place Rule 1,3 - - Rule 5 Rule 7 - - -
Put on top Rule 1,3 - - Rule 5 Rule 7 Rule 8,9 - Rule 7
Take Down Rule 1,3 - - Rule 5 Rule 7 Rule 8,9 Rule 5 -
Stir Rule 1,3 - - Rule 6 - Rule 8,9 - -
Cut Rule 1,3 - - Rule 5 Rule 6 Rule 8,9 - -
Poke Rule 2,4 - - - - Rule 8,9 - -
Push with grasp Rule 1,3 - - - - Rule 8,9 - -
Push with holding Rule 2,4 - - - - Rule 8,9 - -
Push apart by holding Rule 2,4 - - - Rule 9 Rule 8,9 - -
Push together by holding Rule 2,4 - - Rule 8 - Rule 8,9 - -
Pour Rule 1,3 Rule 8,9 Rule 8,9 Rule 7 Rule 5 Rule 8,9 - -
Unload Rule 1,3 Rule 8,9 Rule 8,9 Rule 7 Rule 5 Rule 8,9 - -
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Figure 5. Intermediate exteroceptive sensory input in the process of analyzing the spatial relation rules given in Table 3. The tactile
sensor values are used to detect when an object is grasped by the hand (top). The external force signals are processed to detect
the touching event (bottom). Here a contact in Z direction is detected.

between segmented object point clouds to decide whether
they touch each other or not. An example of this detection
is shown in Figure 4.

While the action is being performed, the data acquired
by other sensors (position, force and tactile) are used in
addition to the vision system. The data collected from these
sensors are fused using several heuristic rules, which are
conjunctions of individual conditions on different sensor
data. For example, the first rule to detect the relation of
manipulator with main object is a combination of conditions
on two sensors: position and tactile. This rule declares a
touching relation when the Euclidean distance between the
two objects is less than a threshold (denoted by D1) and
the tactile sensor detects a grasp. These rules are listed in
Table 3.

The rules of Table 3 use some intermediate signals which
are abstractions of force and tactile sensor data: contact
and grasped. These are flags showing when the robot arm
is touching the environment (contact) or the robot hand is

grasping an object (grasped). The grasped flag is set to one
if the average values of tactile sensors on all three fingers
exceed a threshold. An example of tactile sensor readings
during an action are shown in Figure 5 (top). The solid red
line shows the raised grasped flag at the times that the hand
is grasping some object.

The contact flags raise when the external force applied to
the end effector of the robot arm exceeds a threshold. In the
rules of Table 3, we have only used the contactz flag which
shows contact along in Cartesian Z axis. Figure 5 (bottom)
shows an example of contact detected along Z axis.

Since multiple rules exist to detect the same relation in
Table 3, we should assign, which rules need to be considered
in each action. This is summarized in Table 4 for the actions
in the library.

3.3.3 Real Primitives: In Section 3.2.4 we defined the
abstract primitives. Here, we re-introduce these primitives by
adding their parameters and describe their implementations
at the low-level.
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Figure 6. Examples of periodic trajectories in actions. (a) In the cutting action the following parameters are used to generate a
back and forth motion: ax = 0.− 008 m, ay = −0.01 m, ω = 1.8 rad/s. The initial position is x(0) = −0.6 m and y(0) = 0.7 m.
(b) In the stirring action a circular motion is generated by using the following parameters: bx = 0.03 m, ay = −0.05 m,
ω = 1 rad/s. The initial position is x(0) = 0.187 m and y(0) = 0.55 m.

For the robot arm, we have the following primitives:

• arm move(object , Toff ,P)
• arm move periodic(ax, ay, az, bx, by, bz, ω),
• arm exert(Fdes),

And for the robot hand we have defined the following
primitives:

• hand preshape(q)
• hand grasp()
• hand release()

Here we explain these primitives in more detail and
discuss their specific implementation in our system:

arm move(object , Toff ,P)
This primitive moves the end effector from the current
pose to a pose relative to object. The offset of the target
is stored in the homogeneous transformation Toff .
Equation 1 shows how the goal of this primitive is
calculated from the pose of the object and the offset
transformation.

Pgoal = Toff Pobj (1)

The parameters of the trajectory are stored in P .
We use Dynamic Movement Primitives (DMPs)
introduced in Ijspeert et al (2002) and the joining
method proposed in Kulvicius et al (2012) to generate
smooth trajectories. To save space, the equations of
DMP which generate trajectories are not repeated here.
The outputs of DMP are the desired trajectory of robot
end-effector in Cartesian space that move from the
start pose to the goal pose.

These trajectories are fed as desired values to the low-
level control system of the robot arm. In our setup we
have a KUKA LWR robot which has the following
control policy to generate commanded joint torques
τcmd:

τcmd = JT (kc(X
∗ −X)) +D(q)

+ fdyn(q, q̇, q̈) (2)

where X∗ is the desired pose, X is the measured
actual pose of the robot. The coefficient kc denotes
the gain of the position control which determined the
stiffness of the arm during motion. The terms D(q)
and fdyn(q, q̇, q̈) are the friction and dynamics of the
robot arm which are used in the control system.

arm move periodic(ax, ay, az, bx, by, bz, ω)
For some actions we need to perform some
simple periodic motions. There are comprehensive
frameworks to create periodic (rhythmic) motions
on robots such as rhythmic DMPs. However in our
system we only need simple back-and-forth and
circular motions, for which a combination of sine
and cosine functions suffice. Therefore we implement
arm move periodic primitive using the following
equations:

x(t) = x(0) + ax sin(ω t) + bx cos(ω t)− bx (3)

y(t) = y(0) + ay sin(ω t) + by cos(ω t)− by (4)

z(t) = z(0) + az sin(ω t) + bz cos(ω t)− bz (5)

These equations generate smooth trajectories from
initial position (which is [x(0), y(0), z(0)]). The ax
and bx determine the strength of sine and cosine
components on axis X . There period of trajectory is
determined by the parameter ω. Examples of periodic
motion generated in actions are shown in Figure 6. The
back-and-forth motion is used in actions like cutting,
while a circular motion is needed in stirring.

arm exert(Fdes)

Manipulation actions sometimes need more than just
pure position control. In some tasks we need to also
regulate the force exerted at the environment. Many
times it is important to have both position and force
control at the same time. For example in a cutting
action, the robot arm keeps a force between the knife
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Figure 7. Example of force control using the arm exert primitive. The desired force is 1 N in Z direction.

and banana in the Z direction (constrained space),
while moving the knife back and forth in the XY -
plane (unconstrained space).

This is possible by using parallel position-force
control schemes such as one introduced in Chiaverini
and Sciavicco (1993). The following control policy is
used in this case:

τcmd = JT (kc(X
∗ −X) + Fcmd)

+D(q) + fdyn(q, q̇, q̈) (6)

Here the term Fcmd implements a force control which
is has feed-forward and PI terms:

Fcmd = Fdes +Kp(Fdes − f)

+KI ∗
∫
(Fdes − f) (7)

Example of force control is shown in Figure 7 where
the desired force is Fdes = [0, 0, 1]T N .

hand preshape(q)

This primitive is used to create a desired shape of the
robotic hand. Our robot hand (Schunk SDH-2) has 3
fingers and in total 7 DOFs. The control system of the
hand has the ability to move to a desired configuration:

q = [q1 , q2 , q3 , q4 , q5 , q6 , q7 ]
T (8)

Two sample configurations are shown in Figure 8
which are the power and precision grasps used for
round and elongated objects, respectively.

hand grasp()

To manipulate objects usually it is needed to
grasp them first. For grasping, we use velocity
control of finger joints together with feedback from
tactile sensors on the fingers. The combination of
hand preshape and hand grasp primitives enables

(a) Precision Grasp (b) Power Grasp

Figure 8. Two pre-shape configurations are used in our
system. The power grasp (right) is used for symmetric objects
while the precision grasp (left) is for elongated objects.

us to grasp simple objects, which is enough
to demonstrate the functionality of the proposed
execution system. The complex problem of grasping
arbitrary objects is not in the scope of this research.

hand release()
This primitive is used to release a previously grasped
object which is simply opening the hand until the
tactile sensors show that the object is released.

3.4 Mid-level Action Definition
So far, we explained high- and low-level action components.
In this section, we present a mid-level component that
acts as a bridge between those two levels and guides
action execution. The core of the mid-level component is a
Finite State Machine (FSM) together with an error-handling
protocol.

3.4.1 Finite State Machine An FSM has a number of
states, inputs, outputs and transition rules. The states show
different stages of the execution algorithm. The inputs are
the real relations of the objects. The outputs are the robot
primitives which are sent to the control system of robot arm
and hand.
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Figure 9. State diagram of the finite state machine which controls the execution of actions. This state machine is the main
component of the mid-level. The show the diagram more clear, different colors are used for normal execution (blue), error handling
(orange), failure (red) and success (green) states and transitions.

In the FSM we have some parameters which define the
current action. The main parameters are the number of states,
the desired relations and primitives at each state. To execute
any action in the library, the proper set of parameters should
be loaded into the FSM.

There are also some variables used during the FSM
execution. For instance, variables current column shows
which column of SEC matrix the current relations refer to.
This variable is used to track the progress of the action.

The FSM is a part of a software package to control
the robot setup which is implemented using the Open
Robot Control Software (OROCOS) framework (Soetens
2013, 2006). The OROCOS framework provides tools to

develop real-time robotic software including a useful FSM
implementation. The overview of the mid-level FSM and
execution process is shown in Figure 9. The details of states
and transitions are as follows:

• Initialize: After receiving a new action command, the
high-level definition of the desired action is loaded.
The variable current column is set to 1 to point to
the first column of SEC matrix. The action command
consists of the action type, the main and other objects
involved in the action.

• Check Initial Relations: Here the current relations
of objects are compared to the first column of SEC
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Figure 10. Error handling after failure in grasping an
object. 1- The initial Scene. 2- Perception of the objects by
vision system. 3,4,5- When the manipulator approaches to
grasp the apple, we move it to cause the grasp to fail. 6-
The robot hand opens and the robot arm moves up waiting
for a new perception. 7- New perception of the objects by
vision system. 8,9- Approaching the apple in its new
position and performing a grasp.
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Figure 11. Error handling after the grasped objects slips
through the robot hand. 1- The initial Scene. 2- Perception
of the objects by vision system. 3,4- The manipulator
approaches the apple and grasps it successfully. 5- The
grasped object is taken out of the robot hand to cause the
error. 6,7- The robot hand opens and the manipulator
retracts. 8- New perception of the objects is received from
the vision system. 9- The grasp is repeated successfully.

matrix of the commanded action. The pre-condition of
executing the action is that the two are equal, otherwise
the FSM transitions to the Failure state.
• Go to Next Column: This state increments the

variable current column and causes the action to
progress from one column of SEC to the next. If we
are already in the last column of SEC, it transitions
to Success state, which means the action is done
successfully.
• Select Primitive: In this state the next primitive of

the current SEC column is selected. If available, we
transition to the Execute Primitive state. Otherwise
we are entering the Error state and we need to
handle the error, since this implies that all primitives
of the current SEC column are executed but the desired
changes in relations did not happen.
• Execute Primitive: The selected primitive is executed

here. This state has several sub-states, each performing
one type of primitive. To keep the diagram simple, they
are not shown in Figure 9. In this state, the relations of
objects are monitored and if they change to the desired
values, we transition to theGo to Next Column state.
If relations change to unwanted values, the next state
will be the Error state. Finally if the primitive is done
and no change in relations is detected, it transitions
to the Select Primitive state, to look for the next
primitive.
• Error: This state indicates that the execution of

the current action is not progressing as expected.
However, there is still hope to recover from the error,
and continue the execution. There are two ways to
enter this state. First, the primitives defined for the
current SEC column are all executed but the desired
change in relations has not occurred. Second, during
the execution of primitives an unwanted change in
relations happened.
In this state we try to go back to a previously known
state of the action, and continue from that point.
Usually this means that the robot arm retracts from
the scene and receives new object poses and relations.

After receiving the new perception, we transition to
Evaluate Relations state. In Section 3.4.2 we will
show some examples of handling errors.

• Evaluate Relations: After receiving the new percep-
tion inError state, we evaluate the current situation of
the objects in this state. If for these relations, we could
continue from the last known state, we transition to
Go toNext Column state and continue the execution.
Otherwise, we go to Failure state since we are in an
invalid state and can not proceed.

• Failure: If the relations of objects are in a way that
there is no known way to proceed the execution, we
transition to Failure state. At this point we stop the
execution and announce failure. The failure is reported
to the operator or the high-level planner, so that a
proper decision can be made. Note that there is no
high-level planner introduced here, since it is not in
the scope of this work.

• Success: This state is entered if the action is
successfully executed according to the SEC matrix.

3.4.2 Error Handling The execution of actions could fail
due to different problems. Faults may happen in controllers
and their interfaces, for which proper detection and recovery
systems are necessary. Other errors may happen at more
abstract levels like failure to properly grasp or push an object.
These errors are detectable by observing the relations of the
objects and we can deal with them in our execution engine.

In the previous section we described theError state in the
state machine, which is entered under these conditions:

1. The execution of the primitives does not result at the
expected change in relations (From Select Primitive
state)

2. The execution of the primitives causes
unexpected changes in object relations (From
Execute Primitive state).

To deal with these errors, first we undo the primitives
of the current state (SEC column) to reach the previous
known state. Then, we evaluate the object relations again
and transition to the Check Current Relations state and
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Figure 12. The set of objects used in our experiments. There
are in total 19 objects in 8 categories: 1-Round fruits 2-Long
fruits 3- Cubes 4-Cups 5-Containers 6-Plates 7-Spoons
8-Knives.

continue the execution. This results in a new perception of
the position and relations of objects, by which the system
decides which primitive should be executed next.

The first example shows an error when expected changes
in relations do not happen. In Figure ??, the robot hand
approaches the apple to grasp it, but fails, since the apple
is not in the expected position. The manipulator retracts and
receives the new position of the apple from the vision system
and repeats the grasp.

An example of the second type of error, is shown in
Figure ??, in which after a successful grasp, the object
is taken away from the robot hand. The robot detects the
absence of the grasped object and reacts to it by opening the
hand and moving up. After receiving the new position of the
object, the grasp is repeated. The videos of error handling
cases are shown in the third multimedia file submitted with
this paper.

There are cases where error handling can not help, for
example if we try to cut an uncuttable object (like a cup). The
error handling would try to repeat cutting the cup without
success. After a few unsuccessful repetitions, the system
transitions to the Failure state.

Figure 13. Overall success rate of 10 atomic action execution
after 30 trials for each.

4 Experimental Results
In this section, we will present various experimental results
of our proposed action execution framework. Results cover
execution of both, single atomic actions (e.g. cutting,
pushing, etc.) and long chained activities such as “making a
salad”. Before presenting these results, we briefly introduce
our hardware and software tools used in the experiments.

4.1 Hardware
Our setup consists of a robot manipulator, a three-finger
robotic hand and a vision interface.

4.1.1 Robot Arm: Our robot arm is a KUKA LWR
(Light Weight Robot) IV manipulator. It is a kinematically
redundant anthropomorphic manipulator developed jointly
by KUKA Robot Group and the German Aerospace Center
(DLR). It has 7 DOFs and is equipped with position and
torque sensors at each joint. It estimates the external torques
applied to each joint which also gives an estimate of external
force and torque at the end-effector. The robot can be
controlled both in joint and Cartesian spaces with variable
compliance and damping.

4.1.2 Robot Hand: Our robot hand is a Schunk Dexterous
Hand 2 (SDH-2) produced by the company Schunk. It
has three fingers and 7 degrees of freedom, which can be
controlled in position or velocity modes. It is equipped with
two tactile sensors on each finger, that provide feedback
while grasping objects.

4.1.3 Vision System: Our vision system includes a static
RGB-D (Asus Xtion) sensor and a DSLR camera (Nikon
D7200). The RGB-D sensor provides both color and depth
cues which are processed for image segmentation and
tracking issues. The DSLR camera is further integrated into
the vision system to capture high resolution images of the
scene for the purpose of object recognition. The vision
system is developed using the ROS framework (See Papon
et al (2012) and Schoeler et al (2014)).

4.2 Single Atomic Actions
To quantitatively evaluate the proposed action execution
framework, we conducted a large set of experiments with
several types of actions and objects. The central goal
here is to benchmark the success of the execution of
actions provided in the library. Note, to arrive at a useful
characterization of this framework all actions are analyzed
without error handling. Only by this decisive percent-
success values can be measured. We are not concerned
with complex computer vision, thus, colored and textureless
objects were mostly preferred in the experiments to cope
with the intrinsic limitations of the imaging sensors and to
have more reliable visual segmentation of perceived scenes.
Figure 12 illustrates the set of manipulated objects, which
contains in total 19 different samples from 8 categories, such
as containers, round fruits, etc.

The first part of our experiments covers only single atomic
actions, such as pushing, cutting, or stirring. The first ten
actions defined in Table 4 are considered as atomic actions,
each of which is performed by the robot using objects of
various types, sizes, shapes and poses (see Figure 12). The
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Table 5. List of 10 atomic actions stored in the library and also used in experiments introduced in Section.4.2. The last two
columns show sample objects used in each action.

# Action Name Explanation Main Tool Primary Secondary

1 Pick and Place The main object is cup, apple, orange, - table table
picked from primary cucumber, eggplant, -
and placed on the same object. bucket, plate, box -

2 Push with Grasp The main object is box, apple, orange - - -
pushed to the goal position cucumber - - -
after being grasped.

3 Push with Holding The main object is box, apple, orange - -
pushed to the goal position
after being held on top

4 Poke The main object is poked. box, apple, orange - -

5 Put on Top The main object is put on top cup, cucumber, - table box, bucket, cup
of the secondary object. apple, orange - table plate, board

6 Take Down The main object is taken down cup, banana, - box, bucket, cup table
from the primary object. apple, orange - board table

7 Push apart by holding The main object is pushed orange, box - apple, cup
apart from primary after
being held from top.

8 Push together by holding The main object is pushed apple, orange - box
to secondary after.
being held from top.

9 Cutting The main object is cut zucchini, cucumber knife
by the tool. banana

10 Stirring The main object is stirred bucket spoon, knife
by the tool object.

executed atomic actions with their brief explanations and
involved objects are listed in Table 5.

To evaluate the atomic actions, we provide two types
of results. First, the success rate of execution of each
action type is measured. These results give an overview
of the execution performance of actions on different object
categories presented in various scene contexts. Thus, we can
measure the robustness as well as the generalization capacity
of the proposed action library. Second, we plot variations
in the low-level sensory input, such as tactile, position,
and contact signals, while the action is being executed. In
these results, we can obtain information on the underlying
perception mechanism in the execution framework and the
discretization of the low-level continuous sensory data to
reach high-level symbolic action representation.

To evaluate success rates, we repeated each atomic action
3 times on 10 different object sets, i.e. various object
combinations with different poses. Thus, we obtained 30
trials for each action, i.e. in total 300 experiments. The
overall success rate per action type is shown in Figure 13.
Red bars in the figure depict the standard error of the mean.

The first result is that in 7 out of 10 actions, the success
rate is equal or more that 50 percent. This shows that the
system is able to cope with different objects and poses
for most of the actions. The second impression that the
figure conveys is that there is a prevalent failure, mostly
observed, in the execution of pushing actions which were
mainly performed by just holding objects without applying

any certain grasp, e.g. push with holding described in
Table 5. The overall accuracy was measured as 64.5% and
this value reached 75.8% in the case of excluding those
failed pushing types. The main reason of this accuracy
drop in pushing actions is due to the shape of manipulated
objects. For instance, while the robot was gently holding
the object, e.g. an apple, to push it, the object slipped
over the contact surface and, thus, led to a failure of the
action. It is known that such types of actions are exceedingly
difficult for robots but also for humans and we have often to
reactively correct grasp and push to succeed. Hence, building
in reactive correction mechanisms would certainly mitigate
this problem.

We also observed a low success rate of about 50% for the
cutting and stirring action types. In the stirring action, some
of the failures occurred because the manipulated spoons were
slightly too big for the containers. In the case of the cutting
action, failures were due to inability to cut thick objects such
as round fruits (apple or orange). Human cutting operations
are heavily dominated by reacting to the ”feel” of cutting and
correcting force and angle.

A more detailed analysis on the execution of single actions
is given in Figure 14. The results are separately computed for
each individual action and object category. For those actions
which initially require object grasping, the results are also
categorized according to the grasp type. We here note that
object grasping is not in the focus of this study and therefore
in our experiments we only considered two types of grasps:
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Figure 14. Success rate of executing actions in each object category. Each action is executed 30 times using different object sets.
The ratio of successful trials are shown for each object category (middle columns). For actions involving grasp, the results are
separately shown for each grasp type. The overall success rates on each grasp type and average success scores are shown in the
last two columns. The values in the last column match the final average accuracy rates shown in Figure 13.

power and precision. The average success rate for each grasp
type and for the entire experiment are shown in the last three
columns. For instance, in Pick and place action, 21 out of 30
trials were successfully performed with power grasp, which
led to 67% average accuracy, whereas it was computed as
100% for the precision grasp.

A deeper look at the errors encountered for those 300
experiments shows that about one third of them could have
been recovered when switching error-handling on. The rest
are non-recoverable. Given that the number of errors is in
general relatively small, this estimate could, however, be
incorrect, because not enough error-data exist for strong
statistical evaluation and many more experiments would be
needed to achieve this.

Next, we take a closer look at the low-level sensory data
including the position, tactile, and force contact signals of
the robot arm during the experiments. Here, we aim at
topological changes in the perceived scene by fusing data
from several sensors, and to calculate object relations.

Figure 15 shows the position, tactile, and force sensor data
together with detected relational changes between objects
and the robot arm during the execution of a sample Put on
top action. The first plot in Figure 15 confirms that due to the
use of DMPs with joining, the robot arm seamlessly follows
the desired goal positions which are indicated with circles.
In the second plot in Figure 15 we also see that the tactile
sensor is activated once the primary object is grasped. In
a similar manner, the force sensor reports a contact when
the object is placed. All these sensory data together with

the visual feedback are fused to detect final spatial relational
changes in the scene as described in section 3.3.2. Figure 15
at the bottom illustrates the extracted SEC representation
over time for the Put on top action as a colored matrix which
is identical to the one stored in the action library as shown
in Figure 3. This plot confirms that the proposed action
execution framework can successfully process continuous
sensory data and extract descriptive states in the scene, which
yields compact high-level action representation, i.e. SEC.

In Figure 16, we show similar plots for a Cutting action
in which the robot first grasps a knife and then cuts a
cucumber into pieces. The position plot on the top highlights
the oscillatory motion pattern of the robot arm during the
actual cutting phase. Note that in some cases the actual robot
position does not meet the goal position. This is expected,
since whenever the desired relation changes happen, the
current primitive is ended and the state machine moves to the
next primitive. The second row shows how the tactile sensors
detect the contact which happens at the hand grasp()
primitive (grasping the knife) and how this signal vanishes
right after the hand release() primitive.

The force signal in Z direction is used to verify the contact
between the tool and main objects, in this case the knife
and cucumber, which triggers the oscillatory motion. The
extracted SEC is again the same as the one stored in the
action library (see Figure 3).

In Figure 17 and Figure 18 we show the 3D trajectory
of the robot arm for both Put on top and Cutting actions.
The start and the end of the trajectory as well as position of
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Figure 15. Low-level sensory data in a sample put on top action. The position, tactile and force contact signals are shown on the
top. All changes in object contact relations are shown in the bottom plot as a color coded SEC matrix. Here, blue and yellow
represent Touching (T ) and Not touching (N ) respectively. The gray color shows either Absence (A) or relations which are not
important (don’t-care). Note, primary support and secondary support are the same as primary itself (the table). From the definition
in Fig. 3 some relations can be ignored (don’t care). Some sample snapshots at the bottom show the scene topology at each state
of the action.

objects in the action, are highlighted with red circles and text
labels. Examples of single action executions are shown in the
first multimedia file submitted with this paper.

4.3 Chained actions
To demonstrate the scalability and strength of the proposed
framework, we further benchmarked our system with
execution of chained actions. For this purpose, we defined
two scenarios. In the first scenario, the robot arm was given
the task of performing three atomic actions: Take down,
Push, and Put on top. The second scenario is a more
challenging task: making a salad.

Figure 19 shows the robot execution of the first chained
action scenario. The first three plots depict the low-level
sensory data. Due to having three atomic actions, there exist

three peaks in the force sensor, whereas we obtain only two
contact changes in the tactile sensor. In each action there
is one interval at which the contact in Z axis is detected.
However, we can see that in the second action there is no
grasping.

In the second scenario, i.e. the salad making task, the
robot performed a longer action sequence, in which we
additionally introduced the last two actions defined in
Table 4: pouring and unloading. Consequently, the salad
scenario contains the following steps:

1. Pick up a cucumber and put it on a cutting board
2. Grasp the knife and cut the cucumber
3. Grasp the cutting board and unload the cucumber

pieces into a bowl
4. Grasp the bottle and pour its content into the bowl
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Figure 16. Low-level sensory data in a sample cutting action. The position, tactile and force contact signals are shown on the top.
In the cutting action, a part of the trajectory corresponding to the back and forth motion of knife is zoomed in to show the oscillatory
motion pattern. All changes in object contact relations are shown in the bottom plot as a color coded SEC matrix. Here, blue and
yellow represent Touching (T ) and Not touching (N ) respectively. The gray color shows either Absence (A) or relations which are not
important (don’t-care). Compare to Fig. 3. Some sample snapshots at the bottom show the scene topology at each state of the
action.

5. Grasp a spoon and stir ingredients in the bowl

The final results of the salad scenario are shown in
Figure 20. The low-level signals and high-level symbolic
object relations are shown as usual. For the sake of clarity,
sample snapshots for all five actions are shown vertically
with horizontal arrows on the top showing the corresponding
temporal interval of each action.

Note that in both scenarios, we assume that the high-level
action plan is given in advance since we are not addressing
any planning related issue in this study. Our only aim is to
introduce a generic representation for the seamless execution
of atomic and sequential actions independent from variations
in the scene context.

The videos of chained action executions are shown
in the second multimedia file submitted with this paper.
All videos of this project including the multimedia
files of this paper can be found in the following

address. (https://sites.google.com/site/
aeinwebpage/actions/videos)

5 Discussion

The main contribution of this study was to give a thorough
definition of manipulation actions at symbolic (high) and
sub-symbolic (low) levels and link them through a mid-level
finite state machine. The proposed state machine provides
a mechanism to execute the actions on a robotic arm/hand
system. The proposed framework was tested on a wide
range of actions and objects and we found satisfactory
execution performance on various atomic and chained
manipulation actions. Actions that produced problems are
those notorious types that also humans find hard. So far
our methods are excluding bimanual manipulation actions.
True bimanual manipulations are rare, but also in a single-
hand manipulation the supporting hand can help controlling
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Figure 17. Trajectory of robot arm during the Put on top action shown in Figure 15.
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Figure 18. Trajectory of robot arm during the Cutting action shown in Figure 16.

the force-torque patterns during the action. In Aksoy et al
(2017) we performed a machine vision analysis also of
manipulations, where both hands are used, which may pave
the path for robotic execution.

5.1 Possible Extensions
Note that all evaluations had been performed without
engaging error correction so as to show the plain (feed
forward) properties of this system in a fair way. Performance
increases to near perfect using error correction for all but the
systematic errors; those - for example - where the chosen
object lacks the required affordance for the action. It is
the use of event chains that makes it possible to detect
execution failures at all decisive action time-points. If an
expected object relation has not come into being, then an
error must have happened. This event based error detection is
another advantage of our framework. Interestingly a possible
extension of this work would be to use it for active object
affordance estimation. Repeated trials of an action will allow
distinguishing random- from systematic failures because
random failures can be corrected, but systematic ones not.

Hence an uncorrectable error hints at a systemic lack of
the required affordance (e.g when repeatedly trying to cut a
banana with a cup). This touches the field of developmental
robotics (Pagliuca and Nolfi 2015; Tikhanoff et al 2013)
where object affordance estimation remains a difficult issue.

Another way to extend this framework would be to create
movement primitives automatically. At the moment we are
working on an algorithmic framework that tries to achieve
this using humans demonstration combined with DMPs and
relying on the temporal chunking that the SECs provide.
These preliminary results currently indicated that the here
selected and hand-defined set of primitives is quite well
reflected also by those that can be created by an automatic
procedure.

Along the same lines it is also conceivable to try to learn
(some of) the parameter ranges needed for execution of a
movement primitive for example by using reinforcement
learning (RL) techniques. So far, parameter ranges have been
set manually by us. In general we observed that the rigorous
chunking of the actions, using SECs and Primitives, leads
to large intrinsic robustness of our framework and it was
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Figure 19. Robot execution of three chained actions: 1- Taking down the red apple from the box 2- Pushing the box by holding. 3-
Putting the green apple on top of the box. From top to bottom are shown the position, tactile, and force sensor data as well as the
changes which are detected in the relation of objects in the scene. Sample snapshots for some SEC states are also depicted with
numbers showing their order. Black arrows represent temporal interval of each action.

never a problem to define the required parameter ranges.
Still, using RL might lead to even more robustness but would,
very likely, require creating first a detailed simulation of the
complete setup/framework to assure convergence of learning
by allowing for enough iterations. Thus, implementing
automatic primitive generation and/or parameterization via
RL would, however, exceed the scope of this study by far.

In the context of a European project ACAT ∗, we
had developed a massive XML schema called Action
Data Table (ADT) to capture actions generated by
the here proposed framework. Essentially this is the
file format used to actually store the library data

(see http://www.acat-project.eu/index.php?
page=adt for examples of ADT), which are the high- and
low-level data of an action as specified in the current paper.
This data format enables us to execute new actions also on
different robots and a main advantage of the action library
framework is, thus, that it is (within reason) independent
of the robot embodiment. Transfer to a different machine
requires only the fine-tuning of a set of parameters (e.g.
parameters related to the kinematic chain or to the sensor
hardware). As a consequence, the here proposed framework

∗http://www.acat-project.eu/
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has already been used as an action execution routine in
different robotic applications (Agostini et al 2015; Wörgötter
et al 2015). In the work of Agostini et al (2015), we showed
that the robot can still generate similar actions by replacing
tools in manipulations using the aspect of tool affordance.
The work introduced in Wörgötter et al (2015) showed that
robots can apply bootstrapping at different cognitive levels
to improve their behavior based on the here proposed action
representation and generation method. Therefore we hope
that the library of actions as proposed here can - in the long -
run turn into a useful (and standardizable) robotics software
tool also for other uses.
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