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Abstract— In this paper we propose a new approach for
efficient programming of grinding and polishing operation.
In the proposed system, the initial policy is performed by
a skilled operator and recorded with a passive digitizer.
The demonstrated policy comprises both position and force
data. The optimal robot execution of the task is provided
by applying a virtual mechanism approach, which models the
polishing/grinding tool as a serial kinematic chain. By joining
the robot and the virtual mechanism in an augmented system,
additional degrees of freedom are obtained and redundancy
resolution can be applied to optimize the demonstrated motion.
Another benefit of the proposed approach is that the same
policy can be transferred to different combination of robots
and grinding/polishing tools without any modification of the
captured motion. The proposed approach requires known con-
tact point between the treated object and the polishing/grinding
tool. We propose a novel approach for accurate estimation of
this point using data obtained from the force-torque sensor.
Finally, the demonstrated path is refined to compensate for
inaccurate calibration and different dynamics of a robot and
the human demonstrator using iterative learning controller. The
proposed method was verified in a real industrial environment.

I. INTRODUCTION

While the robots are widely applied in large and medium-
sized batch production, deployment of robots in small enter-
prises is still lagging behind [1]. One of the major reasons for
this is excessive programming effort that is often required for
programming new robot tasks. Learning from demonstration
(LfD) is a promising technology aiming to increase the
efficiency and ease of preparation of new robot tasks [2].
A typical example of processes that are considered hard to
automate are finishing tasks such as polishing and grinding.
Typically, they are performed by a skilled operator which
aims to modify the treated object’s surface in multiple passes
of complex trajectories.

Since manual polishing and grinding requires a lot of skill
and is also labor intensive and a potential health hazard, a
lot of effort was made to efficiently automate such tasks
using industrial robots [3], [4]. Early attempts involve simple
point-to point programming and optimization using trial and
error approach [5], [6]. Beside being time consuming, this
approach lacks the possibility to transfer the learned policies
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Institute, Ljubljana, Slovenia, bojan.nemec@ijs.si,
nejc.likar@ijs.si, ales.ude@ijs.si 2Robotics
Technology Group, Yaskawa Electric Corporation, Kitakyushu,
Japan, (e-mail: kenichi.yasuda@yaskawa.co.jp,
nathanael.mullennix@yaskawa.co.jp)

to different robots and tools. More efficient programming
relies on transferring the policy from a skilled operator,
which involves both kinematic motion and the applied forces
and torques. Various motion capturing system can be used
to acquire such ploicies, such as 3D optical trackers [7],
[8], [9], kinesthetic guiding [2] and special sensors which
capture motion of the human arm [10]. Yet another LfD
approach is based on CAD models (which might be built
on-line with laser scanners) and the learning is performed in
virtual environment using haptic devices [11], [12]. Forces
and torques are captured using universal force/torque sen-
sors, which can be incorporated into the polishing/grinding
machine [7] or in special senzorized tools [13]. Finishing
processes are generally very complex and require precise
tuning of many process parameters in order to achieve
the desired final quality. More advanced approaches are
based on recognizing the operator’s skills using key process
variables and generating the appropriate robot motion from
a predefined skills library, optimized for the robot [7], [12],
[14], rather than transferring the operator’s motion patterns
directly.

One of the major problem with LfD for polishing and
grinding are different kinematic and dynamic capabilities of
human demonstrator and industrial robot. Therefore, direct
copying of a captured motion to the industrial robot is
in most cases not successful. Another unsolved problem
remains how to use previously demonstrated skill applied to
the different polishing and grinding machines and different
robots. Our approach aims to solve the above mentioned
problems by introducing a virtual mechanism paradigm,
which models the polishing/grinding tool as an active robot
mechanism. This results in additional degrees of freedom
(D.O.F) of the augumented robot and virtual mechanism,
which enables to apply on-line redundancy resolution algo-
rithms to optimize the motion of the expanded mechanism.
In order to eliminate the possible calibration error and to
account for the different dynamics of a robot and the human
demonstrator, we apply Iterative Learning Controller (ILC)

The rest of this paper is organized as follows: In Section II
we describe the developed motion and force capture system.
We also briefly introduce the speed-scaled Cartesian dynamic
movement primitives, which is the underlying representation
for the demonstrated motion. In Section III we introduce a
virtual mechanism (VM) approach in the context of a bi-
manual robot. Contact point estimation between the treated
object and the grinding/polishing tool is presented in Section
IV. Section V deals with iterative learning controller frame-



work for refining polishing and grinding movements. The
experimental verification of the overall scheme is described
in Section VI. We summarize our approach and propose
further research in Section VII.

II. LEARNING BY DEMONSTRATION USING DYNAMIC
MOTION PRIMITIVES (DMP) FRAMEWORK

We start by describing our learning from demonstration
(LfD) setup and procedures necessary to capture the pol-
ishing/grinding motions and forces as demonstrated by a
skilled operator. For this purpose we use a passive 6 axis
mechanical digitizer (MicroScribe 6LX). The end link of the
digitizer is attached to the specially designed handle, which
incorporates universal force-torque sensor (DynaPick WEF-
6H200). The handle allows the user to quickly change the
faucet parts, which are the subject of polishing and grinding
operation. The whole setup is shown in Fig. 1. During the

Fig. 1. Learning by demonstration setup for polishing/grinding.

demonstration, we acquire movement policy in Cartesian
coordinates, calculated from the digitizer joint angles, as a
set of points,

G = {pk,qk, ṗk,ωωωk, p̈k, ω̇ωωk, tk}Tk=1. (1)

Here pk ∈ R3 are the positions and qk ∈ S3 unit quaternions
describing the tool orientation, with S3 denoting a unit
sphere in R4. Besides the positions and orientations, we also
record the position and orientation velocities (ṗk, ωωωk) and
accelerations (p̈k, ω̇ωωk). T is the number of samples and tk is
the time at sample k.

Next, we parameterize this demonstrated policy with a
nonlinear dynamical system that enables the encoding of
general trajectories [15], [16], [17]. The trajectory is encoded
by the following system of nonlinear differential equations
for positions p and orientations q,

ν(s)τ ż = αz(βz(gp − p)− z) + fp(s), (2)
ν(s)τ ṗ = z, (3)
ν(s)τη̇ηη = αz (βz2 log (go ∗ q)− ηηη) + fo(s), (4)

ν(s)τ q̇ =
1

2
ηηη ∗ q, (5)

ν(s)τ ṡ = −αss. (6)

In the above set of equations s denotes the phase, τ = tT is
the duration of the policy and z and ηηη are auxiliary variables.
With the proper selection of parameters αz = 4βz > 0 and
αs > 0, the system (2) – (6) becomes critically damped and
converges to the unique equilibrium point at p = gp, z = 0,
q = go, ηηη = 0, and s = 0. Asterisk ∗ denotes quaternion
multiplication and q̄ quaternion conjugation. The quaternion
logarithm log : S 7→ R3 is defined as as

log(q) = log(v,u) =

 arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (7)

The nonlinear forcing terms fp(s) and fo(s) are formed in
such a way that the response of the second-order differential
equation system (2) – (6) can approximate any smooth point-
to-point trajectory from the initial position ppp0 and orientation
qqq0 to the final position gp and orientation go. The nonlinear
forcing terms are defined as linear combinations of M radial
basis functions (RBFs)

fp(s) =

∑M
i=1 wi,pΨi(s)∑M

i=1 Ψi(s)
s, (8)

fo(s) =

∑M
i=1 wi,oΨi(s)∑M

i=1 Ψi(s)
s, (9)

Ψi(s) = exp
(
−hi (s− ci)2

)
, (10)

where free parameters wi,p, wi,o determine the shape of
position and orientation trajectories and ci are the centers
of RBFs, evenly distributed along the trajectory, with hi
their widths. In this formulation we introduced the temporal
scaling function ν(s) which is used to specify variations from
the demonstrated speed profile. This allows to continuously
and non-uniformly scale the speed of the executed motions,
which is an important property for adaptation of the polish-
ing/grinding policy.

In order to parameterize the demonstrated control policy
with a DMP, the weights wi,p, wi,o need to be calculated.
The shape weights wi,p and wi,o are calculated by applying
standard regression techniques [17] and using the demon-
strated trajectory (1) as the target for weight fitting.

Similarly to the forcing terms (8) and (9), ν(s) is encoded
as a linear combination of Mv RBFs

ν(s) = 1 +

∑Mv

j=1 vjΨj(s)∑Mv

j=1 Ψj(s)
, (11)

where vj are the corresponding free parameters (weights).
For ν we initially set vj = 0, i. e. ν = 1, meaning that the
demonstrated speed profile is left unchanged. vj are assigned
a different value only through the change of the execution
speed. Besides movements (1) we also capture forces along
the demonstrated trajectories

F = {Fk, tk}Tk=1, (12)

where Fk ∈ R3 are the measured forces at times tk. We
encode these forces as a linear combination of radial basis



functions

F(s) =

∑MF

j=1 vjΨj(s)∑MF

j=1 Ψj(s)
, (13)

where Ψj are defined as in (10) and vj ∈ R3 are determined
using regression techniques.

III. VIRTUAL MECHANISM FRAMEWORK AS BI-MANUAL
ROBOT MECHANISM

Redundancy resolution schemes rely on a non-square
Jacobian, which maps the joint velocities to the task space,
in most cases given in Cartesian coordinates. Obviously, the
kinematic redundancy appears if we have more degrees of
freedom than needed to accomplish the task. In some cases
the redundancy is not so obvious, as it arises from the shape
of the tool. The task can be kinematically redundant even in
cases when we have a 6 degrees of freedom robots and all 6
Cartesian coordinates are needed to describe the movements.
Typical examples of such tasks are polishing, brushing and
grinding. In such tasks it is not important where exactly the
contact between the brush machine and the object appears;
it only matters that the objects touches the brush machine
with the desired orientation.

A framework to cope with this kind of redundancy is
a virtual mechanism approach, where a polishing/grinding
machine is modeled as a serial kinematic chain, called virtual
mechanism (VM). Additional degrees of freedom arising
from these virtual degrees of freedom can be exploited to
optimize the robot motion. The virtual degrees of freedom
allow the robot to change the contact point between the
object and the polishing/grinding tool in such a way that
it optimizes the desired criterion, which could be the mini-
mization of joint velocities, joint limit avoidance, singularity
avoidance, or collision avoidance. In this paper, we describe
the additional degrees of freedom by exploiting a framework
for describing bi-manual robots [18]. Within this framework,
the polishing/grinding machine is modeled as one robot
arm and only relative coordinates of the bi-manual setup
are needed to accomplish the given task. Fig. 2 shows
an example, where a robot and the polishing machine are
modeled as a bi-manual system.

The relative position vector and quaternion of a bi-manual
setup are defined as

pr = q̄1 ∗ (p2 − p1) (14)
qr = q̄1 ∗ q2, (15)

where p1, p2 ∈ R3, q1, q2 ∈ S3 are the position vectors
and quaternions respectively describing the position and
orientation of the robot’s end-effector and the virtual linkage.
q̄ denotes the quaternion conjugate. Let’s denote the position
and orientation part of the geometric Jacobian of the robot

as J1 ∈ R6×n1 =

[
J1,p

J1,ω

]
, and the geometric Jacobian of

the polishing/griding machine as J2 ∈ R6×n2 =

[
J2,p

J2,ω

]
,

both expressed in a common (usually robot base) coordinate
system, where n1 and n2 is the number of degrees of freedom

virtual mechanism

p2

p1

pr

Fig. 2. Polishing machine and the robot are modeled as a bi-manual system.
The common coordinate frame is placed at the robot’s base. p1 and p2 are
the vectors describing the robot’s position and the position of the virtual
mechanism, respectively. pr denotes relative coordinates, which define the
task.

of the robot and virtual mechanism, respectively. A few
examples of how to form the virtual mechanism and the
corresponding Jacobian are given at the end of this section.
The relative Jacobian relates joint velocities θ̇θθ of the bi-
manual setup and the resulting relative velocities in Cartesian
coordinates. It can be derived from Eq. (14) and (15) in the
form

Jr =

[
R1

T(−J1,p + S(p2 − p1)J1,ω) R1
TJ2,p

−R1
TJ1,ω R1

TJ2,ω,

]
(16)

where R1,R2 ∈ R3×3 are the rotation matrices correspond-
ing to quaternions q1, q2 and S(p2 − p1) is the skew-
symmetric matrix

S

 x
y
z

 =

 0 −z y
z 0 −x
−y x 0


Given the relative Cartesian motion of the robot and the

virtual mechanism, the joint values θθθ of both are obtained
by integrating the relative joint velocities calculated by the
following formula

θ̇θθ = J+
r

([
ṗr,d

ωωωr,d

]
+ Kker

)
+ (I− J+

r Jr)θ̇θθ0, (17)

where er ∈ R6 is the error between the desired relative
coordinates (obtained with DMP integration) and actual
relative coordinates,

er =

[
pr,d − pr

2 log(qr,d ∗ q̄r)

]
, (18)

where subscript ()r and ()d denotes the relative and the
desired coordinates, respectively. θ̇θθ0 are null space joint
velocities, used to optimize the self-motion of the composed
bi-manual mechanism. Kk ∈ R(n1+n2)×(n1+n2) is a positive
definite diagonal matrix with kinematic controller gains.



The algorithm returns both joint values of the real robot θθθ1

and joint values of the virtual robot θθθ2, θθθ =

[
θθθ1
θθθ2

]
. Only

joints θθθ1 corresponding to the real robot are of course used
to control the robot. Virtual joints θθθ2 can be used to detect
and limit excessive rotation of the virtual mechanism (VM),
which might results e.g. in colliding with the environment.

In our setup, the desired relative coordinates pr,d, qr,d

are encoded with DMPs using equations (2) – (5). They
are calculated from the demonstrated coordinates and from
the estimated VM coordinates using (14). A procedure how
to estimate the VM coordinates during the demonstration is
proposed in the next section.

The measured relative coordinates pr and qr are cal-
culated from the current actual configuration of the real
robot (p1, q1) and the virtual robot (p2, q2) (solving direct
kinematic for both robots with θθθ, obtained by integration of
(17)).

Some examples of the kinematics structure and the corre-
sponding Jacobian J2 of the polishing/brushing machine for
three most common cases are given in Figs. 3, 4 and 5. More
complex VM can be derived by combining these three basic
shapes.
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Fig. 3. Polishing disc is modeled as 2 rotational degrees of freedom
mechanism, where l1 and l2 are link lengths, θ1 and θ2 are joint coordinates
and cn and sn are the abbreviations for cos(θn) and sin(θn), respectively.
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Fig. 4. Grinding disc is modeled as 2 degrees of freedom mechanism,
where r is the disc radius and θ and dy are joint coordinates, respectively.
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Fig. 5. Belt grinder is modeled as 2 translational degrees of freedom
mechanism with coordinates dy and dz .

IV. ESTIMATION OF THE CONTACT POINT USING
MEASURED FORCES AND TORQUES

In order to determine the relative coordinates during LfD,
it is necessary to determine the contact point between the
polishing/grinding tool and the treated object. While the
robot kinematic models and the model of polishing/grinding
tool are often available, in industry this is often not the
case for the treated part. In such cases this point cannot
be calculated geometrically. Here we therefore propose to
estimate the contact point from measured forces and torques.

External forces and torques acting on the end-effector are
related by cross product with position vector r

M = r× F = −S(F)r = −

 0 −Fz Fy

Fz 0 −Fx

−Fy Fx 0

 r.

(19)
Keep in mind that all these quantities are given in the tool
coordinate system, which is assumed to be aligned with the
coordinate frame of the force-torque sensor. Eq. (19) can
be used to determine the contact point [19], [20]. Matrix
S(F) ∈ R3×3 is skew-symmetric, hence its rank is equal to
2, ∀ S(F) 6= 0. It follows that there exist multiple solutions
for r satisfying Eq. (19) for the measured external forces
F and torques M (see Fig. 6). The space of all possible
solutions of (19) is linear and forms a line defined by

r(α) = −S(F)+M + αv, (20)

where α ∈ R is an arbitrary scalar value and v = F/‖F‖ ∈
R3. This is because −S(F)v = (F/‖F‖)× F = 0.

Among all possible solutions we choose the one which
intersects the tool (disc, torus or belt) of a polishing/grinding
machine (or is closest to the tool in case the solution line
r(α) does not intersect the tool due to the sensor noise). We
denote the point at which the line intersects or is closest to
the tool by r(αint) (see Fig. 6). To determine the current
configuration of the virtual mechanism θθθ2 and the optimal
α, which determines the intersection point, we solve the
following optimization problem

argmin
θθθ2,α

1

2
‖d(θθθ2, α)‖2= argmin

θθθ2,α

1

2
‖p2(θθθ2) + S(F)+M− αv‖2,

(21)
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Fig. 6. Finding the contact point by computing the intersection/closest
point of the line r(α) with the grinding disc.

where vector d(θθθ2, α) is the distance between the line r(α)
and the polishing/grinding tool modeled as virtual mecha-
nism with joints θθθ2. The Jacobian Jd(θθθ2, α) ∈ R3×(n2+1) of
vector function d(θθθ2, α) is given by

Jd(θθθ2, α) =
[
J2,p −v

]
(22)

Note that in our experiments n2 ≤ 2 and the above optimiza-
tion problem can be solved using any standard optimization
method. We applied Gauss-Newton method. The optimal
estimate from the previous time step on the demonstrated
trajectory is used to initialize the estimation at the next step.

Experimental verification proved, that despite sensor noise,
the contact point estimation remains within few millimeters
of the optimal contact point as estimated by using geomet-
rical models, providing proper force sensor calibration and
gravity compensation of the sensor load.

V. ADAPTATION USING ITERATIVE LEARNING
CONTROLLER

For finishing operations, forces exerted against the pol-
ishing/grinding tool are the key process parameter [12] and
should be precisely tracked in order to achieve the desired
polishing/grinding quality. Unlike in assembly operations,
torques are usually not relevant for finishing operations.
Tracking the demonstrated force also eliminates small cal-
ibration errors that accumulate during the transfer of the
captured trajectories to the robot mechanism.

In has been reported in previous works that it is dif-
ficult to accurately track forces at high velocities [21],
[14], which often arise during the human demonstration.
To overcome this problem, it has been proposed to scale
the desired velocities and forces [14], [7]. Unfortunately,
it is not straightforward to relate force and speed scaling.
In this work, we propose another solution to this problem,
which relies on learning. We provide for accurate tracking of
the demonstrated force profile by applying iterative learning
control (ILC) framework.

ILC is often used in robotics due to its simplicity, effec-
tiveness and robustness when dealing with repetitive tasks,
such as finishing operations. The general aim of ILC is to
improve the behavior of the control system by learning a

feedforward compensation signal [22] from control errors
in previous execution cycles. In this work, the feedforward
compensation signal was chosen as an offset to the demon-
strated position trajectory. It is learned in such a way that
it minimizes the errors between the demonstrated and the
actually applied forces. ILC updates the desired relative robot
positions as follows

pd,l(k) = pDMP (k) + ∆pl(k) + Kpζ‖el(k)‖, (23)
∆pl(k) = Q(∆pl−1(k) + Lp,lζ‖el(k + 1)‖), (24)

where k is the sampling step on the trajectory, l is the
iteration index of ILC, and el(k) = Fd(k) − Fl(k) is the
force tracking error with Fd(k) and Fl(k) being the desired
and actual forces at iteration step l, respectively. pDMP (k)
are the demonstrated relative positions which are encoded
with DMPs. Orientations, however, remain unchanged, i.e.
as demonstrated. In the above equations, Kp, and Lp,l are
R3×3 positive definite diagonal matrices with control gains.
Q denotes a discrete-time low pass filter and provides the
learning stability [23]. ζ ∈ R3 is a unity vector, which
determines the direction of force adaptation. This vector
coincides with the normal to the polishing/grinding tool at
the point of the contact with the treated part [24], [25].
Obviously, in the formulation of the virtual mechanism, this
is the orientation of the end link of the virtual mechanism. It
can be easily calculated from the virtual joints θθθ2, which are
anyway computed at each cycle time (17). The update term
∆pl provides the learned feedforward compensation signal.

The proposed update rule (23) is a variant of current-
iteration force control [22]. Our approach differs from more
usual formulations, where forces are tracked along each
direction in tool coordinates. Due to sensor noise we obtain
far better results by force adaptation in the direction of vector
ζ, which is obtained from the current orientation of the
virtual mechanism and is not subject to the force sensor noise
and vibrations.

Another difference is in the current-iteration force con-
troller. In most of admittance force controllers the force
error is related to the velocity and not to the position as
in our case. The former formulation is more appropriate in
schemes without ILC. In ILC-based schemes, however, the
position related current-iteration force control (23) is more
appropriate, as it has no stability issues and learns better
feed-forward compensation signals [26].

The learned compensation signal and the tracking error
from the previous cycle are encoded as linear combinations
of radial basis functions in exactly the same way as the
demonstrated forces. This has several benefits: a) more com-
pact representation of trajectories reduces computer memory
requirements, b) we can apply velocity scaling of trajectories
and control signals provided by speed scaled dynamic move-
ment primitives framework, c) we can omit filtering, i.e. we
can set Q = 1, since the appropriate filtering is provided by
encoding control signals with DMPs [27].



VI. IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

In this section we outline the implementation of the
proposed framework for finishing operations. The developed
system (see Fig. 7) consists of

• learning from demonstration unit, which was already
described in Section II,

• 6 degrees of freedom industrial robot Motoman MH-6,
• control unit, consisting of Motoman DX100 controller

and industrial PC,
• polishing/grinding machine.

Fig. 7. Experimental polishing/grinding cell.

The PC computer handles the learning by demonstration
process and calculates contact points and relative coordi-
nates from the demonstrated motion. It is also used to
encode relative coordinates as DMPs and forces as a linear
combination of radial basis functions. DMPs encoding the
relative coordinates and the demonstrated forces encoded as a
linear combination of radial basis functions are passed to the
MOTOMAN FS100 controller. Redundancy resolution (17)
is implemented on the robot controller FS100 in Yaskawa
MotoPlus programming language (C library for robot con-
trol).

To show the efficiency and performance of the proposed
framework, we demonstrated many faucet polishing trajec-
tories and executed them with and without applying virtual
mechanism. Without the VM, the robot was not able to
perform the demonstrated trajectory as the execution violated
the joint limits, as it can be seen from the image sequence
in Fig 8. On the other hand, when VM approach was used,
the robot did not need to play back the demonstrated motion
directly. Instead, only the relative motion that is relevant for
the task was executed. Thus the robot could successfully
execute the demonstrated trajectory while minimizing the
joint velocities. The corresponding robot motion is shown in
Fig 9. See also the video attached to this paper. Fig. 10 shows
that after 5 adaptation cycles, the robot also substantially
reduced the difference between the demonstrated and the
measured forces. Note that VM minimizes joint velocities,
which results in generally better force tracking. We can addi-
tionally diminish the force tracking error by speed scaling of
the learned DMP using the temporary scaling function ν(s).

Fig. 8. Image sequence for the task execution without VM. The robot fails
due to the joint limits violation.

Fig. 9. Image sequence for the task execution with VM. The robot executed
the task successfully.
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Fig. 10. Norm of the force error in 5 adaptation cycles. Legend relates to
the number of the adaptation cycle.

VII. CONCLUSIONS

In this paper we proposed a new approach for learning
finishing operations by demonstration. Several important
novelties were introduced:

• Using the VM approach, only the relevant part of
the demonstrated motion can be reproduced, i.e. the
relative motion between the treated object and the
polishing/grinding tool. Thus the system becomes re-
dundant even though the applied robot only has six
degrees of freedom and the robot can reproduce the
demonstrated motions that would be outside of the
robot’s workspace if the robot just played back the
demonstrated trajectories.

• The contact point and the VM coordinates are deter-
mined from the measured forces and torques. A geo-
metrical model of the treated object is thus not needed,
which is important for many industrial applications.



• The tracking accuracy of the force controller is en-
hanced by applying ILC, which is further improved by
performing adaptation in the direction determined by
the orientation of the virtual mechanism.

The direct benefits of the proposed approach is that the
actual finishing policy is optimized taking into account
the kinematic/dynamic capabilities of the robot rather than
human operator. The proposed VM approach enables the
transfer of the demonstrated policy to different robots and
tools without any modification.

We have performed more than 100 polishing and grinding
experiments. Our experiments show clear advantages of the
VM approach. In more than half of experiments, the robot
was able to perform the demonstrated motion by applying
the VM, whereas it failed without it. We did not encounter
any case where the VM approach would degrade the perfor-
mance.

Our future work will focus on dynamics of the VM
approach, modeling the impedance of the virtual mechanism,
and implementation of the proposed framework in industrial
plants.
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