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Abstract— Small and Medium Enterprises can utilize robotic
assembly solutions to improve their productivity. This is espe-
cially true if the assembly cells can be reconfigured to accom-
modate smaller batch sizes and flexible tasks. The Horizon 2020
project ”ReconCell” aims to develop such a reconfigurable work
cell. We created a Digital Twin of this reconfigurable robot cell
in order to follow the Industry 4.0 approach. Users can visually
model and develop different assembly processes for the digital
reconfigurable robot cell, as well as execute them in simulation.
To be able to transfer the simulated processes to hardware, the
Digital Twin has to be consistent with the setup of the real
robot cell: It needs to be thoroughly calibrated before it can be
used. In this contribution, we present methods to conduct such
a calibration interactively, and use the resulting consistency to
conduct virtual commissioning of simulated assembly processes
and transfer such processes to a physical robot cell.

I. INTRODUCTION

Reconfigurable workcells allow fast change-over times and

easy changes in automated manufacturing processes. Espe-

cially Small and Medium Enterprises (SME) are targeted

for this kind of workcell since these companies usually

have a portfolio of highly specialized parts and components

with a very low level of automation in their manufacturing

processes [1]. In many cases, costs for experts to build a

workcell that meets an SMEs requirements are too high. This

holds true not only for initial costs, but also for recurring

costs if changes in the process are necessary. A more viable

solution is to include SMEs in the process of setting up

robotic systems and allow them to make changes to the

systems on their own. The inclusion of the company can

happen in three different phases:

1) The SME can create an initial workcell layout in a

virtual environment and do the calibration on the real

workcell.

2) The SME can do the actual programming of tasks and

thus create and adapt the process it wants to automate.

3) The SME can do recurring tasks like changeover and

recalibration.

Due to the fact that it is desirable to have non-expert users

on site that are capable of performing these changes, ease

of use with regard to the hardware and software interfaces

for reconfiguration tasks is a necessary requirement. That

implies the utilization of tool exchange systems and versatile

Fig. 1: Visually Programmed tool exchange process in a

virtual and physical environment.

actuators that can be utilized in a variety of processes. In

addition, structural parts and machine elements that can

be easily modified and assembled in different layouts are

desirable. This conforms to the idea of easily operated

Plug-and-Produce components [2] that are mandatory for

successful deployment and commissioning of flexible robotic

systems.

With reference to the hardware interfaces, it is important to

distinguish two different kinds of reconfiguration tasks that

allow for workcell design changes: The first task includes

all changes that demand a shutdown while workers can

manually dis- and reassemble a workcell, while the second

one includes automated changes that are implemented by

(e.g.) passive fixtures or actuators [3]. Gaspar et al. presented

an exemplary system (ReconCell) comprising different types

of reconfigurable hardware and a software infrastructure

to do low-level operations like actuator movements and a

number of automated reconfiguration tasks in the workcell

[4].

Considering the programming capabilities of conventional

robot controllers, a new approach is necessary for recon-

figuration tasks and easy adaptation of processes to create

complex, while highly flexible programs in manufacturing

applications. From a conventional controllers perspective,

such a reconfiguration task is quite complex. Such a con-

Proceedings of the 2018 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM),
Auckland, New Zealand, July 9-12, 2018

ThBT6.3

978-1-5386-1854-7/18/$31.00 ©2018 IEEE 1396



Fig. 2: Side-by-side view of a real ReconCell (left) and its

digital twin (right).

troller demands a large number of poses that have to be

taught manually. This also implies that the controller needs

to manage a large number of configuration states of a

workcell. Therefore, we require a software environment that

includes all workcell elements and allows for process exe-

cution control while maintaining a minimal set of reference

points to deduce workpiece and element poses in a workcell.

Virtual Testbeds (VTB) fulfill the requirements by offering

a virtual environment that can be used for initial planning,

programming, testing and final execution [5]. A VTB is

executed by a simulation system that provides a number of

advantages considering different domains like (Rigid Body

Dynamics, Sensor Simulation, etc.) that can be utilized for a

holistic system model. Thus, a workcell can be created in the

VTB before it is deployed to the shop floor. This includes

the design of an initial workcell layout integrating structural

elements, flexible fixtures, actuators and workpieces. The

entirety of all these parts in a structured form is called

simulation model that can be loaded into the simulation

system and thereby integrated into the virtual environment.

Virtual Testbeds are also a foundation for Simulation-based

Control that allows to transfer simulation results from the

virtual environment to the physical workcell. Figure 2 shows

a view on an exemplary workcell in the real and in the

virtual environment. The digital twin of the real workcell

is employed either independently to verify e.g. motion plan-

ning, or it is closely coupled to transfer motion commands to

the actuators while mirroring the cell behavior. Since all the

workcell elements are integrated in a central control instance,

the virtual environment can be utilized to do optimizations

of (e.g.) workpiece placements as shown by Atorf [6].
In the following sections, we will summarize how the

ReconCell infrastructure can be utilized for high-level plan-

ning tasks. We will briefly outline how a manufacturing

process can be defined by a programming paradigm that

allows for an easy transfer from a workcell in the virtual

environment to the physical cell. Since this requires a consis-

tent representation of the real cell in the virtual environment,

we will further specify how the calibration process of cell

elements works.

II. A RECONFIGURABLE WORKCELL

We apply the presented techniques to a reconfigurable

robotic workcell, which is called ReconCell. An in-depth

description of all the hardware and backend software com-

ponents can be found in [4]. A ReconCell consists of a steel

frame, a set of passive fixtures and a number of actuators,

i.e. two industrial robots, a tool exchange system, grippers

and other tools, either specialized to a specific use case

or for general purpose usage. The hardware is controlled

by a software backend that allows an operator to issue

movement commands and trigger binary actions like gripping

or activating a screwdriver. The ReconCell infrastructure

defines a set of messages in a ROS network that provides

detailed information on the current cell status. In addition,

distinct action servers are provided to offer a set of services

that can be triggered by the cell operator. Some examples of

such services include Point-to-Point and Linear Movements,

or actions to trigger sensor data processing components to

identify the quality of operations that were carried out on a

workpiece [7].

The virtual environment acts as a frontend for a Recon-

Cell to enable an operator to execute high-level tasks. The

integration of virtual and real environment is realized in two

parts.

A. State replication in Virtual Testbeds

The ReconCell VTB is capable of accumulating all the

status messages in the ReconCell ROS network to replicate

executed tasks in real-time. Spatial information of the robots’

TCPs is used to identify grippers and tools that need to

be triggered during gripping actions. Each robot’s position

is updated continuously and mirrors the real robot. Due to

the fact that the real cell’s setup mirrors the simulation, the

spatial information of all parts is available to identify the

part an action is to be carried out on. Gripping actions are

identified by the logical state change of the robot I/O and are

also mirrored in the VTB by triggering the gripper’s digital

twins.

Thus, the analysis of cell operation becomes possible by

investigating the replicated states in the virtual environment.

This opens up a wide range of possibilities for testing,

optimization and verification, as all robot states can be

displayed during any task in the workcell. Using this method,

we can easily collect operational data for further analysis.

Fig. 3: Robotic workcell with frames used for calibration.
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B. Simulation-based Control

In addition to reviewing the behavior of the digital twin

during simulated cell operations, we can instruct services

to control the cell’s real actuators and review the behavior

of the physical twin. In order to connect the real twin to

our simulation system, we embedded clients that correspond

to Action Servers in the ROS network into the VTB. The

ActionBlock concept, which is further outlined in the next

section, introduces agents that utilize this embedded clients

in the ReconCell backend. Simulation-based Control is es-

sential to operate the cell to its full capabilities. Based on the

simulated virtual environment, a cell design is used to do the

planning and execution of robot motion. The overall benefit

lies in the monitoring of the comprehensive cell state and

the generated information that can be used for automatisms

not available in conventional work cells.

Both cases require calibration of the digital twin to the

state of the real cell. We explain the calibration process in

detail in Section IV. However, Figure 3 contains a prelim-

inary example of such a calibration: On both sides of the

picture, three frames are marked. Two are located on the

passive fixtures’ (i.e. hexapods’) top plates and one is located

at the tool center points (TCP) of the robot to the cells’ right.

We can determine transformations between each pair of the

three frames in the real cell and each pair of the three frames

in the virtual cell. Those transformations are here portrayed

by arrows. The cell is calibrated when the transformations

in the real and virtual cell match.

As soon as the virtual robot’s TCP touches one of the

hexapods top plates, it is essential that the real robot’s TCP

does likewise. Otherwise, fatal collisions might occur that

cause damages to the hardware and occasion high costs for

repair and downtime of the workcell. This applies to the case

that the workcell is controlled from the virtual environment

as well as the case that operations are passively reconstructed

in the virtual environment.

Fig. 4: Analysis of robot motion during cell setup in the

virtual environment revealing collisions between actuator and

frame.
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Fig. 5: Exemplary process, visually modelled and pro-

grammed by a hierarchy of ActionBlocks (taken from [8]).

In ReconCell, a calibrated workcell is also integrated into

the development workflow, such that the operator gets steady

visual feedback while planning actuator motion during pro-

gramming tasks. Figure 4 depicts an automatically planned

path that would lead to a collision between the highlighted

(green) cell elements. In a calibrated state, the operator can

ensure that a collision free path found in the VTB will not

generate a collision in the real workcell.

III. VISUAL PROGRAMMING

In contrast to conventional, text-based programming meth-

ods, Visual Programming is a graphics-based paradigm based

on visualizing and manipulating semantic connections be-

tween items. Visual Programming is usually utilized by

inexperienced developers or non-experts, and offers its users

a concrete, direct, explicit way of programming while they

experience immediate visual feedback [9]. Examples of a

Visual Programming environments for robot control are

LEGO Mindstroms [10] and RoboStudio [11].

Schlette et al. developed an agent-based Visual Program-

ming environment for eRobotics (called ActionBlocks) and

utilized it for micro-optical assembly process development

[12] and virtual commissioning [13]. The ActionBlock Vi-

sual Programming system is currently used in ReconCell[14].

Losch and Roßmann argued that ActionBlock networks can

be mapped to the widespread process modelling methodol-

ogy of Petri nets [8]. They also presented a formalism to

utilize macro-based, recursive ActionBlock compositions as

a tool for hierarchical process modelling, where different ab-

straction levels are mapped to sub-networks of ActionBlocks
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(as shown in Figure 5).

In order to use ActionBlocks not only for the design

of simulated robot processes, we extended the capabilities

of robotic agents and enabled them to interface with the

ReconCell ROS network described in section II. The inter-

face is built by ROS Action Clients. Figure 6 displays the

AgentSwitcher, a tool to choose between simulated and real

execution of an ActionBlock based robot process. From the

view of the ActionBlock network, the simulated and real

behavioural implementations are functionally equivalent and

offer an identical interface. When set to real execution, the

robotic agent sends preconfigured ROS command messages

to the robot control server and receives its status messages for

process monitoring and error handling. This mechanism fully

implements the eRobotcs concept of Simulation-based Con-

trol. We prototypically implemented ROS-based behaviours

for most common robotic actions - movement, gripping

and releasing of objects. With just these behaviours, we

can already visually program pick-and-place subprocesses,

and execute them on a real robot after validating them in

simulation. Such an example is depicted in Figure 1:

The top right part shows the simulated ReconCell includ-

ing a visually programmed path that the robot’s TCP tra-

verses. The lower right part shows an ActionBlock program

sequence that controls the cells behaviour by combining the

movement, grasping and releasing actions. All the agents are

defined in the simulation database visible on the top left of

Figure 1. They specify whether the actions are to be carried

out purely in the VTB or transferred to the real ReconCell.

The result is shown in the lower left part that includes the real

ReconCell operating synchronously controlled by its digital

twin.

Besides the pure logical definition of the control flow

represented by ActionBlocks, the graphical cell design and

interactive programming is an important step to an easy to

use tool kit including interaction capabilities with the virtual

Fig. 6: Visual Programming component to switch between

simulated and physical execution of ActionBlocks.

Fig. 7: Kinesthetic guidance feature in the Virtual Testbed

environment.

The goal is the simplification of operating the Virtual

Testbed during programming tasks (i.e. ease-of-use). Since

kinaesthetic guidance is a widely adopted method of teach-

ing poses by demonstration [15], the same behaviour was

implemented for the Virtual Testbed. For example, it is

beneficial to guide the robot to a tool or workpiece while

immediately getting feedback on the feasibility of the action

(i.e. reachability, potential collisions).

In Figure 7 an industrial robot is show that can be manip-

ulated by an operator in a constrained way. Two coordinate

systems are displayed, one is the base frame that can be used

to place the robot at a desirable pose. The second is located at

the robot’s tool center point offering a set of handles that can

be used like classical drag and drop actions. While holding

one of the handles, the TCP can be moved along the selected

degree of freedom.

IV. WORKCELL CALIBRATION

In order to utilize Simulation-based Control, we require a

sufficiently detailed digital twin of the ReconCell, as seen

in Figure 2, and a set of calibration data. We distinguish

between two model variants of a ReconCell in the virtual

environment, the base model and the calibrated model:

A base model represents the cell during all of the planning

and optimization phases. It includes all elements and depicts

the ideal workcell that is to be built and commissioned

(Figure 8, top left). One of the problems that arise from this

is that cell assembly is not an ideal process, and therefore,

offsets and inaccuracies between elements (e.g. cell frame

beams) can occur.

In contrast, a calibrated model represents the cell state in

the virtual environment after it is commissioned (Figure 8,

top right). The base model is adapted and all the element

positions are corrected to comply with the physical cell

(Figure 8, lower left). These corrections are included in a

calibration dataset (Figure 8, center) and originate from the

difference between the base model and real cell.
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For calibration, we identify and associate poses of indi-

vidual parts both in the physical and in the virtual workcell.

We identify two sets of frames {PFi} and {V Fj}, with

superscript P for the physical cell and superscript V for

the virtual cell. Association between frames is appointed by

the indices, such that a virtual frame V Fk correlates to a

physical frame PFk.

Between any two poses m and n in the real workcell,

we calculate a homogeneous transformation P
mTn. The trans-

formation must match the transformation V
mTn between the

corresponding poses m and n in the virtual workcell up to

a high degree of accuracy:

P
mTn · VmT−1

n → I

For a quantitative analysis, one can either evaluate a metric

on the Special Euclidean group SE(3) or, after decomposing

both transformations into translations p and rotations (v, α),
the Euclidean norm [16].

The previously explained connection holds true for the

calibrated model, but it does not clarify how to generate

calibration data and augment the base model corrspondingly.

To realize the calibration of a base model, we create pose

measurements in the real workcell with reference to an

arbitrarily chosen base frame. As a result, we determine a

transformation for any measurement in a frame WF . This

calculation requires knowledge of the forward transformation

between WF and any conducted measurement. There are dif-

ferent methods to determine these forward transformations:

Ostrowska et al. showed the feasibility of applying stan-

dard 6-axis industrial robots as measurement systems [17].

Since at least one industrial robot is deployed in a ReconCell,

we utilize it as the measurement system for the calibration

process. The benefit lies in the straight forward description of

the serial kinematic chain with Denavit-Hartenberg parame-

ters [18]. These are used in the simulation system to model

the actuator to accurately map its mechanical structure during
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~
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Fig. 8: Creation and application of calibration data.
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Fig. 9: Scheme and example of hierarchical workcell cali-

bration in the virtual environment.

robot motions.

Due to the fact that we measure axis positions during cell

state replication (see Section II-A) we deduce the pose of

the tool center point M,nF with reference to the robot’s base,

which we choose to be WF . Thus, we get the transformation
P
WTM,n from the base to the nth frame in the set {PFi}.

Likewise, V
WTM,n represents the transformation from the

base to the nth frame in the set {V Fj}, since we can also

calculate the pose of the tool center point in the virtual

environment. The set {V F̃j} includes the frames of the base

model that are uncalibrated and analogously we define V
WTñ.

Given these transformations, a calibration data element is

therefore equal to the offset

On =V
W T−1

ñ ·VW TM,n

Calibration, as described above, is carried out on a per

workcell basis and includes the exact spatial information for

all the components in that one physical instance of a cell.

If, for example, a company operates multiple workcells for

the same task in a production facility in order to parallelize

production, each workcell gets its own calibration dataset

that is applied to the common base model. In this scenario,

it is important to reduce the number of frames required for

calibration, since maintenance costs for recalibration grow

linearly with this number.

Therefore, we conduct a hierarchical, constrained calibra-

tion of the (alrady hierarchically structured) base model as

shown in Figure 9. Changes on one subtree, i.e. modification

of the cell configuration, necessitates only the recalibration

of that subtree’s root node. Therefore, we reduce the effort

of maintenance after manual reconfiguration tasks. Figure 10

shows the simulated environment of a ReconCell overlayed

with the current calibration state of the workcell. It helps

identifying which parts need to be calibrated (red), which

have already been calibrated (green) and which parts are

currently in the progress of calibration.

Hierarchical calibration is a handy tool in conjunction with

Visual Programming, as it provides graphical feedback on

which parts can reliably be used when issuing motion com-

mands. While visually programming a process, the spatial

position of tools and parts might only approximated (i.e. un-

calibrated). In this case, programming a process is possible,

it is essential to verify the resulting movement commands

after calibration to avoid collisions and ensure safety. Since
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Fig. 10: Creation and application of calibration data. Cal-

ibrated components are tinted green, while uncalibrated

components are tinted red.

measured offsets are applied to the base model, including

an inherent update of target poses for robot movements,

transitioning between calibrated and uncalibrated state is

seamless. Thus, operators can easily deploy the ReconCell

and corresponding programmed processes.

V. CONCLUSION

In this paper we demonstrated how Visual Programming

and interactive calibration can be used to simplify and

enhance the user experience during reconfiguration tasks in

robotic workcells. With these techniques, Small and Medium

Enterprises can improve their productivity due to lower costs

during initial setup and maintenance tasks in reconfigurable

workcells. This holds especially for small-batch production

of highly specialized products. We presented a method

for interactive calibration of individual cell elements that

supports the transition of robot programs from a virtual

environment to the shop floor. We tackled the problem of

misalignment of structural elements and tolerances during

setup by utilizing calibration, thus avoiding inconsistencies

between finals pose of workpieces and fixtures between

simulation and reality. The tools and techniques that come

with the Visual Programming paradigm further simplify the

work of operators and enables process development by non-

expert users.

We used the ReconCell as a demonstrator for the pre-

sented techniques and thus verified how the goal of an

easily programmable robotic workcell can be achieved by

introducing a Virtual Testbed that incorporates a Digital Twin

of the workcell. The continuous information on the cell state

during operation helps to identify issues early and avoid cost-

intensive downtimes and repairs.
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