
Teaching a Robot the Semantics of Assembly Tasks
Thiusius Rajeeth Savarimuthu1, Anders Glent Buch1, Christian Schlette2, Nils Wantia2, Jürgen Roßmann2

David Martı́nez3, Guillem Alenyà3, Carme Torras3, Ales Ude4, Bojan Nemec4, Aljaž Kramberger4

Florentin Wörgötter5, Eren Erdal Aksoy5, Jeremie Papon5, Simon Haller6, Justus Piater6, and Norbert Krüger1

Abstract—We present a three-level cognitive system in a
Learning by Demonstration (LbD) context. The system allows
for learning and transfer on the sensorimotor level as well as
the planning level. The fundamentally different data structures
associated to these two levels are connected by an efficient
mid-level representation based on so called ”Semantic Event
Chains”. We describe details of the representations and quantify
the effect of the associated learning procedures for each level
under different amounts of noise. Moreover, we demonstrate the
performance of the overall system by three demonstrations that
have been performed at a project review. The described system
has a Technical Readiness Level (TRL) of 4, which in an ongoing
follow–up project will be raised to TRL 6.

Index Terms—Robotic assembly, Learning by Demonstration,
Vision, Object Recognition

I. INTRODUCTION

There is a significant body of work on learning (or pro-
gramming) by demonstration (LbD) [1], [2], [3], [4]. It is
well known that LbD–approaches face a number of challenges
that grow with the ambition to transfer the taught actions to
new task contexts. Such generalization requires the detection
and characterization of similarities between potentially very
different contexts as well as an appropriate transformation of
parameters. These parameters can be of very different types
depending on the representational level at which transfer is
taking place.

We introduce a system that is taught assembly tasks by
human demonstration, in which learning takes place in a three-
level cognitive architecture with the sensorimotor level as the
lowest level and a probabilistic planner as the highest level.
These two levels are connected by a mid-level vision repre-
sentation, which bridges from the continuous and ambiguous
sensorimotor data to the planning operators defined over a
discrete state space. After learning, the system is then able to
plan, monitor and execute tasks, where both monitoring and
executing is done by within the same representation.

At the sensorimotor level (Fig. 1, yellow area), a first prob-
lem in an LbD–framework is that the demonstrated trajectories

1 are with the Maersk Mc-Kinney Moller Institute, University of Southern
Denmark.

2 are with Institute for Man-Machine Interaction (MMI), RWTH Aachen
University, Germany.

3 are with the Institut de Robòtica i Informàtica Industrial, CSIC-UPC,
Spain.

4 are with the Humanoid and Cognitive Robotics Lab, Dept. of Automatics,
Biocybernetics, and Robotics, Jožef Stefan Institute, Slovenia.

5 are with the Bernstein Center for Computational Neuroscience (BCCN),
Georg-August University Göttingen, Germany.

6 are with the Institute of Computer Science, University of Innsbruck,
Austria.

(see Fig. 1B) as well as the forces and torques observed in the
teaching process can in general not simply be replayed by the
system to arrive at a succesful action. These trajectories are
usually suboptimal for the specific robot embodiment, since
the human performed the action in his/her own and hence
different embodiment. Furthermore, the transfer of actions
in general requires a given action to be performed with
significant pose differences compared to the context in which
the action was taught. As a consequence, trajectories might
change fundamentally, and if forces and torques are important
factors of the action (as, e.g., in Peg-in-Hole (PiH) actions),
their optimal choice might also change with the task context.
Hence, learning actions in a LbD context on the sensorimotor
level presupposes a representation that predicts appropriate
parameters in terms of grasp poses (Fig. 1C) and object poses
(Fig. 1A) as well as trajectories (Fig. 1B), possibly with
associated force/torque profiles.

Other kinds of challenges arise at the planning level, (figure
Fig. 1, red area). In a complex assembly process, it is not
only required to adapt trajectories to a new context, but
also to plan action sequences such that they attain a given
assembly goal. To this end, usually pre- and post-conditions
in discrete spaces are required to compute potential outcomes
of action sequences. The transfer of a task to a new context
then involves the synthesis of a new action sequence as a
function of these pre- and post-conditions, as the originally
taught action sequence often does not apply in the new task
context due to, e.g., pose differences of objects in the start
configuration or workspace constraints. Moreover, often the
success of an action can only be predicted with a certain
likelihood, and optimal plans in terms of action sequences
with high overall success likelihood should be performed.
From this it becomes evident that the planning level requires
a fundamentally different representation than the sensorimotor
level as well as that the information that is transferred is of
very different kind than on the sensorimotor level.

The community has realized the huge gap between action
representations at the planning and sensorimotor levels [5], [6],
[7], [8]. In this paper, we suggest a three-level representation
of actions similar to that described in [6] to close that gap
(see again figure (Fig. 1, beige area)). In our representation,
a mid-level stage based on so called ’Semantic Event Chains’
(SECs) [9] mediates between the continuous and usually rather
ambiguous sensorimotor level and the planning level which
operates in discrete (probabilistic) state spaces.

It is important to mention that during teaching as well as
during execution, very different aspects are learned at the
different representational levels. While at the sensorimotor



Fig. 1. Learning takes place in all 3 levels of the system: level 1) sensori-motor information is used to identify and track object movement as well as to
code the force torque profile of actions. Level 2) Semantic changes in key-frames are used to identify object interaction and grouping of key-frames are used
or recognize actions. level 3) Execution of actions are planned based on current observed state and possible next actions.



level the relation between grasps, trajectories, force/torque
profiles and object poses are learned, at the mid-level, struc-
tural properties of actions such as relational changes between
objects are acquired. At the planning level, pre- and post-
conditions as well as success likelihoods of individual actions
in a certain context are learned.

The different levels of our action representation can be
used for transfer obeying very different purposes. At the
sensorimotor level, for example, reasonable biases for poten-
tially successful trajectories are provided. At the mid-level
comparisons across potentially rather different actions can be
performed with the aim of action and object substitution. At
the planning level, the outcome of potentially long sequences
of actions can be predicted. Consequently, complete assembly
processes can be planned and executed.

We present a system in which transfer between different task
contexts is taking place at all three levels. As a consequence,
learning can also happen at all three levels in parallel [6].

We demonstrate the application of the three-level action
representation outlined above in an industrial assembly task
for which we specify the transfer at the different levels
as well as outline how this transfer can be exploited for
future industrial assembly systems. We address a complex
assembly task, the so-called Cranfield benchmark (see Fig. 2).
This benchmark contains a number of challenges typical for
industrial assembly processes. First, the objects are of very
different shapes, making it impossible to grasp each of them
with only one simple gripper. Instead we use the Schunk SDH-
2 dexterous hand, which is able to realize a large number of
different grasp types (see Fig. 3). Secondly, insertion tasks of
various kinds need to be performed in a complete assembly
process. Finally, with up to 9 steps (see Fig. 2) required to
perform a complete assembly process, the Cranfield assembly
task exhibits a typical level of complexity for an industrial
assembly setting. We want to stress that although we used the
Cranfield benchmark to test and evaluate our approach, we did
not make any assumptions that are specific for the Cranfield
task and hence our approach can potentially be used for a wide
range of assembly tasks.

This system was primarily developed during the EU-project
IntellAct1 (Intelligent observation and execution of Actions
and manipulations that was running from 2011 to 2014).

II. STATE OF THE ART

In the first sub–section, we discuss related work on the over-
all system level. In the subsequent sub–sections, we discuss
work related to each of the three levels: In sub–section II-B,
we go through related work on the sensorimotor level as well
as on simulation systems. In sub–section II-C, we discuss work
related to the SEC representation. Finally in sub–section II-D,
we discuss related work for the planning level.

A. System Level

There are many LbD systems already applied mainly in an
industrial context. It is not possible to compare our approach

1EU project IntellAct (FP7-ICT-269959)

Fig. 3. Basic grasp types of the Schunk SDH-2. Left column: open and
closed form state of the two-finger pinch grasp. Center column: three finger
ball grasp. Right column: three finger pinch grasp.

with all of those, hence we choose some examples to make
the differences of today applied LbD systems to our approach
explicit.

In [10], Stopp et al. describes a manufacturing system,
where the human operator and the industrial robot work
together as partners in a joint manufacturing process. In
this system, the operator instructs the system by specify-
ing manipulation sequences. Each action in the sequence is
programmed by means of a hand-held computer. For each
action in the sequence the operator is prompted to specify
the location of the object being manipulated using a laser
pointer and likewise the target position of each object. The
system records the information and repeats the actions as
instructed autonomously to complete the assembly task. The
task description and sequence is given at the start. In [11] the
mobile platform, ”Little Helper”, is described. In this system
the human operator can define tasks using either a teach- or
vision-based interface. Like in the system proposed by Stopp
et al., the task planning and sequencing is given by the human
operator and is fixed at execution time. Lenz et al. [12] present
the design of the JAHIR-demonstrator which is an assembly
demonstrator allowing for joint action collaboration between
human and robot in a shared workspace.

In [13], Mollard et al. presents a system using LbD to learn
assembly tasks. The abstract representation of the task used
for generating the action plan is constrained to interactions
between two objects at a time and are extracted using physical
user demonstrations. When an action plan has been generated
the user can visually inspect the plan using the graphical user
interface and modify it if. The system has no prior knowledge
of the overall assembly goal and hence has no interaction with
the user during demonstration of the assembly task as such.

The system described in this paper goes in many aspects
beyond the systems mentioned above and also the systems
currently applied in industry. First, the human operator demon-



Fig. 2. One of the possible sequences of steps to assemble the Cranfield benchmark.

strates a possible sequencing of actions by performing the
task using his/her own embodiment. In addition, instead of
providing a manual segmentation in the demonstration pro-
cess, our vision system observes the interaction between the
manipulated objects and, based on this, proposes a possible
sequence to complete the assembly. Compared to [13], the
proposed system in this paper, has an overall assembly goal
and uses this goal to evaluate the user demonstrations and
the proposed system. Our system can inform the user, when
the demonstrations are sufficient to reach the assembly goal.
Moreover, at execution time the system generates a possible
sequencing of actions based on the conditions of availability
and reachability of the objects. After completing each action,
the system re–evaluates the plan and continues with the exe-
cution. In this way the proposed system differs from [10] and
[11] by dynamically changing the execution plan. Furthermore,
the human operator can join the robotic system during the task
execution by performing some of the sequenced actions. The
proposed system will monitor both the robot and the human
during execution and will also update the execution sequencing
according to the completed actions. In the same way, the
proposed system can be used to monitor task performance
by human workers. Most importantly, our system is able to
learn on three levels synchronously: It learns appropriate
trajectories based on force information on the sensory-motor
level, it merges action variants that are semantically equivalent

into abstracted actions on the mid-level.and finally pre- and
postconditions on the planning level.

B. Processing on the sensorimotor level and low-level simu-
lation

Pose estimation and tracking: 3D object recognition and 6D
pose estimation have been active research topics for several
decades. An early work of [14] extracts a combination of
edge and surface features for object detection. The seminal
work [15] presents a recognition system based on the spin
image descriptor. Mian et al. introduced in [16] a full 3D
modeling and recognition system based on local descriptors
called tensors. In a notable work, [17] presented a highly
descriptive point cloud feature descriptor. The same descriptor
was used as a plug-in feature for sophisticated recognition
pipelines in [18], [19]. A recent survey [20] provides an
extensive overview of current available methods for keypoint
detection, feature description, and object recognition in 3D.
Similar to previous works, our vision system uses a local 3D
feature descriptor based pipeline for matching local structures
and recovering the pose of rigid objects. Specifically, we rely
on the pose estimation system [21] for fast recovery of full
6D poses.

Once initial object pose has been established, we then
continuously monitor the state of each of the observed objects



using visual tracking. Multi-target visual tracking (MTVT) is
a well-established field, which goes back over thirty years
[22]. In this work we use the Sequential Monte Carlo method
known as Particle Filtering to track targets, in particular a
point-cloud 6DOF version [23] which subsamples models to
work in real time. Particle filtering was first introduced to the
vision community by Isard and Blake [24] and has been the
subject of much subsequent research extending it [25], [26].

Robot-Control: The execution of a desired assembly task by
a robot has to deal with inaccurate localization of objects in
the workcell by vision and tight-tolerance operations that are
common in the assembly of many products. Consequently, the
robot must be compliant to successfully execute the assembly
task, allowing the modification of the trained movements.
Many assembly operations can be considered as a variant
of a peg-in-hole task (PiH), which has been extensively
investigated in the past and was also in focus of our investiga-
tions. Although many assembly problems can be solved using
passive compliance, only robots with active force feedback
can deal with more difficult assembly problems where larger
localization errors and operations with tighter tolerances occur
[27].

Active force feedback is therefore often used in robot as-
sembly - including in our work - and regardless of whether the
underlying robot is admittance- [28] or impedance-controlled
[29]. However, active force control approaches usually require
high feedback gains in order to adapt to the unexpected
environment changes, which can cause contact instability in
assembly tasks [27]. To speed up the task execution while
avoiding high-gain feedback control, we propose to apply
modern robot learning and adaptation approaches [30]. The
basic idea of our approach is to gradually improve task
execution, starting with slow task performance and increasing
the speed of execution in the follow-up task executions using
iterative learning control.

Exploiting Virtual Reality: Comparisons of real and virtual
data have been carried out before within numerous simula-
tion systems such as V-Rep [31], Gazebo [32] or Microsoft
Robotics Developer Studio [33]. However, our approach ex-
ceeds the standard camera simulation of other simulation
software as it allows for simulating various optical and elec-
tronic effects in real-time, due to utilization of rasterization
techniques that can be implemented in modern shaderdriven
GPUs for hardware accelerated real-time rendering [34].

Simulation is a well-established tool for the development
of automated systems, but we go beyond a purely sensor- and
image-based output and emulate mid- and high-level data as
it is generated by a combination of sensory and processing
components [35]. This allows for bootstrapping the complete
system at a time when its individual components have not been
implemented, yet. Furthermore, we are adding a multi-screen
stereoscopic rear projection and an ultrasonic tracking system
for absolute movement tracking as well as a wireless dataglove
for hand movement detection for dynamic interaction with a
human operator.

C. Mid-level SEC representation

In this work, Semantic Event Chains (SECs) are proposed as
a mid-level action representation for assembly tasks. The main
aim of employing SECs as a mid-level processor is to encode
the continuous low-level signals as a sequence of descriptive
symbolic states that represents the task topology. Such state
sequences are indicative for the monitoring task of actions.
There is a large body of work on topics related to action
monitoring in computer vision and machine learning.

Considering the type of actions performed, the previous
action recognition related works can be categorized in two
major groups. The first group ([36], [37], [38], [39]) focuses on
monitoring of full body motions, such as walking and running
by considering the intrinsic hand or body movement features.
The second group ([40], [41], [42], [43], [44]), on the other
hand, investigates manipulation actions (e.g. pick&place, push-
ing) in which interactions between objects and hands play the
most crucial role in the process of extracting the discriminative
action cues. Industrial assembly tasks, as addressed in this
work, fall into this type of actions.

Along these lines, the work presented in [40] introduces
a method for encoding the whole manipulation sequence in
a single activity graph. The main difficulty here is that very
complex and large activity graphs need to be decomposed for
the further recognition process. In the work of [41], segmented
hand poses and velocities are used to classify manipulation
actions. A histogram of gradients approach with a support
vector machine classifier is used to categorize manipulated
objects. Factorial conditional random fields are then employed
to compute the correlation between objects and manipulations.
However, this work does not consider interactions between
the objects. Different from this, visual semantic graphs were
proposed in [42] to recognize abstract action consequences
(e.g. Assemble, Transfer) only based on changes in the
structure of the main manipulated object. The work in [43]
presented a method for hierarchical estimation of contact rela-
tionships (e.g. on, into) between multiple objects. The previous
work [44] suggested extraction of abstract hand movements,
such as moving, not moving or tool used, to further reason
about more specific action primitives (e.g. Reaching, Holding)
by employing not only hand movements but also the object
information. Although all those works to a certain extent
improve the recognition of manipulations and/or objects, none
of them addresses the problem of deriving key events, i.e.
primitives of manipulation tasks for executing the observed
actions with robots.

On the other hand, high-level grammars with generative
models, e.g. Hidden Markov Models (HMMs) [45], [46] and
also discriminative frameworks based on multi-class Support
Vector Machines (SVM) [47] and semi-Markov models [48]
were proposed to reach to the level of simultaneous action
segmentation and recognition. High-level grammars model the
transitions between single actions in order to monitor action
sequences by computing the minimum cost path through the
network using efficient dynamic programming techniques. The
main drawback here is the requirement of a large amount
of training data to learn a state sequence and transitions for



each action. Generative and also discriminative models are
generally based on bottom-up continuous movement trajecto-
ries that have high variability in appearance and shape due to
differences in demonstrations performed in various scene con-
texts with different objects. In contrast to the aforementioned
monitoring approaches, we propose a method that is based on
the semantics of observed actions without being affected by
the low level data variations in object or trajectory domains.

Recent works such as [49] described a Markov random field
based model for decomposing and labeling the sequences of
human sub-activities together with manipulated object roles.
In the modeling process they employed human skeleton in-
formation, object segments and the observed object tracks.
Likewise, [50] introduced a Bayesian model by using hand
trajectories and hand-object interactions while segmenting and
estimating observed manipulation sequences. In contrast to
generative HMM - based frameworks, the SEC representation
of actions also obeys the Markovian assumption. The main
difference here is that all states, i.e. key frames, in the event
chains represent topological changes in the scene and are fully
observable. Furthermore, since detailed movement variations
are not considered, event chains do not require a large corpus
of training data for learning individual actions [51].

D. High-level planning system and Execution

On the highest level, we have a planning system that deter-
mines the best sequence of actions that should be executed to
complete the assembly. It requires a set of planning operators,
which may be handcrafted or learned. Below we provide an
overview of techniques that have proven effective to learn
planning operators for robotic tasks.

The main challenge in such context is to reduce the number
of training actions, so that the learning phase can be completed
in a reasonable time. Two techniques that allow a robot to learn
fast are relational reinforcement learning (RL) and teacher
demonstrations.

In relational RL, a relational representation is used to
generalize the acquired knowledge over objects of the same
type, which reduces greatly the number of actions required to
learn [52], [53]. Lang et al. [54] have improved even further
the performance with the REX algorithm, which uses count
functions to apply relational generalization to the exploration-
exploitation dilemma, and thus, it learns domains with very
reduced amounts of exploration.

On the other hand, the ability to request demonstrations
from a teacher can also speed up learning. In some approaches
the teacher has to intervene to improve the robot behavior
whenever it is not sufficiently satisfactory [55], [56], [57].
However, an algorithm that can actively request demonstra-
tions when needed is preferred, as it releases the teacher from
having to monitor the system continuously. Active demonstra-
tion requests have been included in algorithms with confidence
thresholds [58], which request demonstrations for a specific
part of the state space whenever the system is not sure about
the expected behavior. A confidence-based method was also
described in [59], which was combined with supplementary
corrective demonstrations in error cases. Agostini et al.’s

approach [60] requests demonstrations from the teacher when
the planner cannot find a solution with its current set of rules.

In contrast, we use the REX-D algorithm [61], which com-
bines relational RL and active demonstration requests. REX-D
requests demonstrations only when they can save a lot of time,
because teacher’s time is considered to be very valuable, and
uses autonomous exploration otherwise. In addition, it also
applies the relational generalizations of REX [54] to yield a
new algorithm that can learn with fewer action executions and
demonstration requests than previous approaches.

Finally, as robot actions are not expected to be perfect
and our representation of the state may lack information, the
effects of actions executed by the robot will have uncertainties.
A probabilistic model is learned with optimization methods
in [62], but the restrictions for the initial set of candidate rules
need to be manually coded. In the KWIK framework [63], a
method was proposed for learning the probabilities associated
with a given set of action effects using linear regression [64],
as well as an extension for learning the action effects them-
selves [65]. However, a large number of samples are needed
because the problem of learning action effects is NP complete.
In our proposed method, we integrate the rule learner proposed
by Pasula et al. [66] in REX-D, which employs a greedy
algorithm to obtain rule sets that optimize a score function.
Although this does not guarantee finding an optimal solution,
it generates good rule sets based on only a few experiences.
Furthermore, it generates rules with deictic references and
noisy effects, which make models more compact and tractable.

III. CRANFIELD BENCHMARK AND MARVIN PLATFORM

To test and evaluate the system, we have created the
MARVIN platform, which is a robotic platform designed to
perform industrial assembly tasks (see Fig. 4). The setup
includes both perception and manipulation hardware. The
perception hardware includes three sets of vision sensors, each
set consisting of a Bumblebee22 stereo camera, a Kinect sensor
as well as a projector which on demand projects texture on
the scene to improve stereo processing. The three camera sets
are placed with approx. 120◦ separation, as shown in Fig. 4.
In addition to the cameras, the platform is also equipped
with high-precision trakSTAR magnetic trackers3 capable of
providing 6D poses simultaneously from up to four sensors
which we use for teaching.

The manipulation hardware consist of two 6 degree of
freedom (DOF) robots of the type UR5. At the TCP of one of
the robots, a 6 DOF force-torque sensor of the type IP604 is
mounted. Furthermore one of the robots is equipped with an
SDH-2 dexterous hand.

The MARVIN platform is used to assemble the Cranfield
benchmark. There are 9 steps in the assembly of the Cranfield
benchmark as seen in the Fig. 2. Some of these steps are
interchangeable and hence can be performed in parallel such
as step 1 to 5. However step 6 can only be performed after step
3 and hence these two steps must be performed sequentially.

2http://www.ptgrey.com/products/bumblebee2
3http://www.ascension-tech.com/realtime/RTtrakSTAR.php
4http://www.ati-ia.com/products/ft/ft models.aspx?id=Delta

http://www.ptgrey.com/products/bumblebee2
http://www.ascension-tech.com/realtime/RTtrakSTAR.php
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Delta


Fig. 4. The robotic MARVIN platform with two manipulators and three
camera pairs.

In the same way, step 4 and 5 must be performed before
step 8. Within these 9 steps there are 6 different assembly
actions. These are PiH actions for round pegs (used in step 1
to 3), PiH actions for square pegs (used in step 4 and 5), the
placement action of the pendulum (step 6), the screwing of
these pendulum head (step 7), the placement of the separator
(step 8) and finally placement of the faceplate (step 9).

IV. VIRTUAL TESTBED SUPPORT FOR SYSTEM
DEVELOPMENT AND OPTIMIZATION

Right from the beginning, the system development was
accompanied by a Virtual Testbed - a 3D simulation envi-
ronment to integrate, test and optimize the individual methods
for learning, monitoring and execution (see Fig. 5. As a central
part of the ”eRobotics” methodology, Virtual Testbeds [VTBs]
previously have been applied in space and field robotics to
support and accelerate the development of complex technical
systems [67]. In a VTB, the target system is modelled and sim-
ulated in a comprehensive 3D simulation environment which
– via plugins – provides components for, e.g., programming
and control of kinematics, rigid-body and sensor simulation,
as well as a variety of means to connect and exchange data
with other systems. The representation of a target system
in a VTB allows for requirements analysis, system design

Fig. 5. Learning in a Virtual Testbed.

and design validation based on the simulation of subsystems,
the overall system, and the system in its target environment.
Based on calibrated components, the level of detail of the
simulation allows for the development of data processing
algorithms and control schemes for operating and controlling
the simulated system. The algorithms and schemes developed
in the VTB are then transferred to operate and control the real
system using methods of hardware/software-in-the-loop and
simulation-based control [68].

A major problem which often arises with complex technical
systems is that functionalities of modules are too closely
coupled and high-level modules depend on the availability and
readiness of low-level modules close to the target hardware.
Thus, efficient integration and testing is typically available
only in later phases of system development.

The IntellAct project required the development and de-
ployment of advanced software modules for observation and
planning, while the target hardware and low-level modules
were still in preparation. Thus, a VTB of the hardware as
well as other components such as the Cranfield benchmark
and certain software components was set up as a virtual
substitute for the components for robot execution, sensorial
output and the tracker in order to provide ideal data of objects,
kinematics and sensors in several application scenarios. Only
a few months into the project, the VTB served as a reference
and source for ground truth data for bootstrapping the design,
training and benchmarking of the high-level modules. Ground
truth data was generated by carrying out object manipulations
with data gloves, where object and joint positions, contact
events, bounding boxes etc. were directly available from 3D
simulation [69].

Beyond bootstrapping, the detailed camera and sensor sim-
ulation in the VTB allowed for offering benchmark images
and point clouds with controlled levels of quality, reaching
from ”ideal” to ”close to reality”5. The major advantage of
generating sensorial ground truth in 3D simulation is the full
transparency and control of data acquisition and the world
model at each time step, thus providing otherwise unavailable
details of the significant parameters. On the other hand,
image generation from simulation generally faces the problem
that the produced images are too ideal due to a insufficient
modeling of noise and other effects. Based on results from
space robotics [70], the sensor and camera simulation in
the VTB supported the generation of ideal images as well
as images that closely resemble the real characteristics of
specific RGB and RGB-D sensor hardware. In particular, this
allowed for the evaluation and optimization of the modules for
pose estimation, stereo reconstruction and action recognition.
This has been a problem so far, since ground truth for such
algorithms is very hard to define in real setups due to the
problem of estimating object poses with higher certainty than
cameras would allow.

5Here, ”close to reality” is defined by the similarity of outcomes when
key factors of the real and simulated data are processed by libraries such as
OpenCV and PCL, e.g. color histograms (RGB deviation, RGB saturation),
edge detection, SURF feature detection and RANSAC feature similarity.



V. RECORDING SINGLE ACTIONS

In the next three subsections, we will describe the three level
representations, that has been sketched in the introduction,
through the process of recording a single action.

A. The Sensorimotor level

At the lowest level of the proposed system, we have the
sensorial and motor information. This information includes the
raw motion data from the robots and grippers. Additionally, it
covers the images and depth data from the vision sensors and
the forces and torques data from the wrist sensor. We record
these data for each assembly action in the Cranfield benchmark
in a special Learning by Demonstration set–up which allows
for the exploitation of the users dexterous competences (see
Fig. 6). In the recording phase at the sensorimotor level, the
main challenge is not of a representational kind, since basic
formats are close to the signal level and hence can be defined
in a straightforward way. Challenges at this level however are
the stable, robust and precise visual extraction of poses and
trajectories as well as an appropriate way of teaching robot
actions. The recording of trajectories with associated force-
torque profiles of the robot is described in subsection V-A1.
Furthermore, we generate object detection and pose estimation
based on the vision information acquired at this level. Pose
information is then fed into a real time tracking system
such that the system is able to monitor multiple objects
synchronously as described in sebsection V-A2.

1) Recording motor information: There are 6 unique as-
sembly actions in the assembly of the Cranfield benchmark -
see Section III. Each of these actions is encoded in the system
by human demonstration. During these demonstrations the
human performs the action using the same objects as the robot
and hence is able to perform the assembly task as intended
with full sensorial information. At the same time the robot,
in tele–operation mode, copies the movements of the human
demonstrator and thereby performs the action as a copy of that
performed by the human (see Fig. 6).

The trajectory and the force-torque (FT) profile of the
robot movements are recorded while the human demonstrator
performs the action in the teleoperation mode. During this
mode, the forces and torques registered by the FT sensor in the
wrist of the robot are logged along with the robot and object
poses. The magnetic tracker provides 6D poses with a rate
up to 200hz. By embedding the sensors into the objects being
manipulated by the human, the tracking system is able to track
the movements of the object and transfer these to the robot.
Fig. 6 shows a human moving a square bolt with a trackStar
sensor embedded. The robot hand is holding an identical object
and performing the same movements as the human. In this
way, human dexterous competences can be directly transferred
to the human circumventing the use of kinesthetic guidance.
Kinesthetic guidance would force the teacher to work in the
embodiment of the robot which prevents natural movements.

During this process, the following information is recorded
and stored in a database: the initial pose of the object before
manipulation begins, forces and torques measured at the robot
wrist and poses of robot and the final pose of the object.

Fig. 6. Control of the robot in teleoperation mode. The robot performs a
one-to-one copy of the human demonstrated path.

By recording such data for each of the six actions, we can
build up an action library for the assembly of the Cranfield
benchmark. Further description of the usage of the data is
given in section VIII-B. These data is then used during the
action execution to perform the different assembly action
requested by the planner in the top level of the proposed
system (Fig. 1, planning (3)).

2) The vision system: The vision system consists of two
interacting modules. The first one performs object recognition
and pose estimation and the other real–time tracking.

Fig. 7. The IntellAct vision system: On the left, the tracking history at an
intermediate stage of the assembly is shown. The coloured threads show the
positions each moved object has gone through during the assembly process.
The picture on the top right shows the poses found. The two pictures on the
bottom right show two images of the cameras.

Object Detection and Pose Estimation: Object Detection
determines which of the Cranfield benchmark objects are
present in the scene. Where they are located in the workspace
is determined by pose estimation (see figure Fig. 7). To
deal with this task, we represent all objects by point clouds,
which can be easily generated from the available CAD models
of the Cranfield objects. Then, objects are detected using a
recently proposed RANSAC algorithm [21]. The 3D point
cloud representation allows for finding the full 6D pose of
objects, which can be immediately sent to the robot system.
All poses are refined using several iterations of ICP [71] for
achieving high accuracy. For this initial perception problem of
locating objects, correct and accurate detections are crucial,
so we use high-resolution stereo point clouds extracted from
the BumbleBee cameras. This introduces a delay before any
processing starts, but this task only needs to be solved once,
namely at the very beginning of an assembly.



Object Tracking: Once objects and their poses are detected,
the proposed system employs a 3D tracker for keeping track of
all the objects in the scene in real-time. This is achieved by a
novel tracking algorithm based on an octree structure, which
encodes both adjacency and temporal information [72]. As
an additional improvement, this structure allows for occlusion
handling. If any of the objects undergoes partial occlusions
during manipulation, the tracker detects that certain leaves of
the octree have become occluded using a raycasting algorithm.
In such cases, the leaf nodes representing the occluded parts
are “frozen”, and once they reappear, the tracker re-estimates
the most plausible configuration of the object. This greatly
increases stability of the tracker during complex manipula-
tion sequences. The algorithm runs in near-real-time, approx.
10 Hz [73], by taking advantage of a spatially stratified
sampling technique first presented in [23]. Contrary to the
initial detection task, the tracker uses faster, but less accurate
Kinect point cloud streams, allowing for correct tracking of
all the objects at high speed.

B. Associating SECs as mid-level representation

The low level sensory information recorded as described in
section Fig. V-A provides continuous streams of trajectories,
poses, forces and torques. This is inappropriate for comparing
actions at a semantic level, since for example very different
trajectories might lead to the same topological changes in
the scene. A first step required for a reasonable semantic
scene interpretation is a segmentation of the continuous signal
stream into meaningful chunks of discrete events that indicate
unique topological changes in the scene. This segmentation
and semantic condensation is achieved by Semantic Event
Chains that transform the signal stream into a matrix, entries
of which indicate topological changes in the scene.

‘Semantic Event Chains’ (SECs) were introduced in [9] as
an efficient encoding scheme for manipulation actions. SECs
are essentially based on consistently tracked image segments
extracted from the perceived visual input stream. Each con-
sistently segmented image is represented by a graph: nodes
represent segment centers and edges indicate whether two
image segments touch each other in 3D (see figure Fig. 1(A
and D)). By employing an exact graph matching method, the
continuous graph sequence is discretized into decisive main
graphs, i.e. “key frames”, each of which representing a topo-
logical change in the scene. All extracted main graphs form
the core skeleton of the SEC, which is a matrix (see Fig. 8)
where rows are spatial relations (e.g. touching) between object
pairs and columns describe the scene configuration when a
new key frame occurs. SECs consequently store sequences of
changes between the spatial relations of the objects and human
or robot hand in the scene. The descriptive change-patterns in
SECs remain the same for a given manipulation type even
when there are large variations in trajectory, pose, velocity,
and objects. Thus, SECs can be used to invariantly classify
manipulations as well as to categorize manipulated objects, as
shown earlier in [9], [51].

Figure 8 depicts the SEC representation of a sample “Peg
in Hole” (PiH) demonstration, in which a hand is first taking

Fig. 8. Sample “Peg in Hole” (PiH) action with extracted SEC. Each SEC
column corresponds to a different key frame. Top row shows key frames with
consistently tracked unique segments and corresponding scene graphs. Rows
describe spatial relations between objects. 1 and 0 given in the event chain
stand for spatial relations touching and not-touching, respectively.

a peg and then placing it in a face plate hole. For instance, the
first row of the SEC represents the spatial relations between
graph nodes 8 and 4 which are the hand and red peg, respec-
tively. Note that, although the scene involves more object seg-
ments (e.g. segment number 7), the SEC representation only
encodes object pairs that produce at least one relational change
from not-touching to touching or vice versa since all other
pairwise relations (e.g. between the hand and table) are static
and irrelevant. On top of Fig. 8, sample key frames including
tracked segments (coloured regions) and corresponding main
graphs are given to illustrate the topological configurations at
the related SEC columns.

Furthermore, we associate each key frame in SECs with the
trajectory and FT profiles of the manipulator as discussed in
section Fig. V-A, since key frames introduce anchor points at
which the continuous data can be discretized. We also enrich
each graph node in SECs with respective object and pose
information computed only at the decisive time points, i.e.
key frames.

C. Association of planning operators to SECs

At the planning level, we aim to compute goal - oriented
action streams by means of planning operators. Prototypical
patterns of key frame sequences in a SEC can be associated
to predefined planning operators representing actions such as
”performPiH(objectA,objectB)” or ”remove(objectA)”. More-
over, symbolic states, which are extracted from SEC key
frames before and after the actions, indicate pre- and postcon-
ditions of the planning operators that will be used in section
VII for action monitoring and in section VIII-A for full action
sequence planning.

The SEC representation is attached to three high-level
modules via the Predicate Estimator and the Manipulation-
Recognition modules (see Fig. 1(F)), as described in detail in
sections VII-A and VII-B.

The Predicate Estimator takes each SEC keyframe, i.e. col-
umn, enriched with object poses to estimate the current state
predicates as described below. The touching relations between
objects are combined with the object poses to generate the



PegInHole(peg4,hole3)
Clear(peg4)

PendulumPlaced(pen)
Clear(pen)

PegInHole(peg3,hole4)
Clear(peg3)

Clear(sep)

PegInHole(shaft,hole5)
Clear(shaft)

Free(hole1)

Horizontal(peg1)
Clear(peg1)

Free(hole2) Clear(peg2) Clear(front)

Fig. 9. An example of the state predicates used to describe the Cranfield
benchmark.

predicates. SEC keyframes are passed to the Manipulation-
Recognition module, which transforms them into individual
actions. A set of sequential SEC columns defines a unique
action, such as peg in hole. In VTB experiments, actions
are encoded by triplets of keyframes corresponding to object
pick-up, object transit, and object placement. However in
real experiments, the number of SEC columns varies due to
noise in the segmentation and tracking. Therefore actions on
the MARVIN system are encoded by a pair of keyframes
corresponding to object pick-up and object placement. Both,
the state predicates and the actions are required to learn the
planning operators.

A state is represented by a set of predicates that permits
describing the different objects that the robot will work with.
Each predicate defines a relation between two objects or a
specific feature of one object. The state space consists of the
following set of predicates:
• Clear(X): True if object X is graspable, i.e. it is in a gras-

pable position and there are no other objects occluding
it.

• Free(X): True if hole X is free.
• Horizontal(X): True if X is laying down (in a horizontal

position). Pegs are much easier to grasp if they are
standing up (in a vertical position).

• PegInHole(X, Y): True if peg X is inserted in hole Y .
• SeparatorPlaced(X): True if separator X has been placed.
• PendulumPlaced(X): True if pendulum X has been

placed.
• FacePlateFrontPlaced(X): True if front faceplate X has

been placed.
These predicates are also used to define the goal that the

robot is expected to achieve. An example of a state used to
describe the scenario is shown in Fig. 9. Given both the state
and the goal, the planner will select the best planning operators
to solve the task.

Predicates are obtained from the SEC representation en-
riched with object poses [74]. Whenever (see section VII-B) a

Action:
PlacePeg(X,Y)
Preconditions:
peg(X), clear(X), ¬horizontal(X), hole(Y), free(Y)
Effects (Success probability: predicate changes):
0.6: ¬free(Y), PegInHole(X,Y)
0.2: ¬clear(X)
0.2:

Fig. 10. NDR rule example for placing a peg.

new state is required, the latest SEC column is used to obtain
the updated set of predicates representing the scene. Touching
relations as provided by the SECs are used to identify which
objects are related to each other, while poses permit checking
different parts of one object. For example, if a peg is touching
a faceplate, their relative positions will be checked to see if
the peg is positioned in any of the faceplate holes.

Planning operators are represented as Noisy Deictic Rules
(NDR) [66]. Each rule r encodes the expected effects of
executing an action a given a set of preconditions φra . As
robot actions can fail or have unexpected outcomes, rules can
have different effects that represent all the changes that an
action may output and their corresponding probabilities. An
example can be seen in Fig. Fig. 10. Each NDR rule refers to
one action, while each action may be represented by several
rules. All the rules related to the same action have disjoint
preconditions φra,i∧φra,j = ∅ | ∀i, j, so that each state-action
pair (s, a) is covered by just one rule r.

Whenever an action is either executed or demonstrated, a
new experience E = [s, a, s′], which includes the states before
and after the action execution and the action itself, is stored
into a library of experiences. Using these experiences, the rules
that represent robot actions can be learned with a relational
learner [66], where a greedy heuristic search is used since the
problem of learning stochastic rule sets is NP-hard [65]. The
algorithm optimizes a score function that encodes a trade-off
between the accuracy and the complexity of the rules,

S(R) =
∑

(s,a,s′)∈E

log P̂ (s′|s, a, rs,a)− α
∑
r∈R

PEN(r), (1)

where rs,a is the rule covering the experience when a is
executed in s, P̂ is the likelihood of the experience, PEN(r)
is a complexity penalty and α is a scaling parameter.

VI. LEARNING ACTION SEQUENCES

In this section, we focus on the problem of learning full
tasks, for which sequences of actions are needed to reach
a goal state. Note that a large part of the training has been
performed in a 3D simulation environment (see Fig. 5). In
that context, action libraries with SEC models and associated
planning operators are created as well as their associated
trajectory and FT information. Learning on the SEC level is
described in section VI-A and learning on the planning level
in section VI-B. Moreover, the Decision Maker at the highest-
level will decide when to request new demonstrations from the
teacher, and when to execute actions on its own to learn and
complete the task as outlined in section VI-B1. Note that the



Fig. 11. Overview of the SEC learning framework.

representation at the sensorimotor level stays unchanged from
what has been described for the recording of single actions.
However, fine-tuning of the actual action execution results in
significant speed - ups and will be described in section VIII-B.

A. Matching and generalization of SECs

An individually extracted SEC is only a sub-optimal repre-
sentation of an action, because context changes and noise can
lead to manifestations of rather different SECs for the same
action. To be able to subsume these different manifestations
into a generalized SEC representation that can also be the basis
of an action library, we apply a matching and merging scheme
for incoming SECs. To give evidence for the robustness of
our representation at the mid-level, we investigate the stability
of the SEC matching under different kinds of noise. These
experiments indicate that the matching technique to compare
SECs are robust to noise, in particular to the appearance of
additional columns and rows in the SEC.

The main aim of the learning is to generate a library of
single manipulations, e.g. peg in hole actions, simulated in
VTB. Such a library can then be employed to monitor the
observed chained actions in the real world set-up as outlined
in section VII or to excute actions on the robot system (see
section VIII).

Figure 11 illustrates the on-line unsupervised learning
framework, introduced in [51], which is triggered whenever a
new manipulation sample is observed. At start, an individual
manipulation is shown in VTB and the first extracted SEC
sample is assumed to be the first “model” and stored in a
“SEC–library”. We then encode the manipulation that follows
again by a SEC and we compare it with all existing SEC
models in the library. For this purpose, the framework mea-
sures semantic similarities δ between the new SEC sample
and the existing models by employing the method described
in [9], which compares rows and columns of two SECs using
sub-string search and counting algorithms. Computed semantic
similarity values between all existing models and the new
sample are stored in a matrix, called the similarity matrix ζsim,
which is then converted into a histogram H representing the
distribution of similarities. We apply the conventional Otsu’s
method [75] to the normalized histogram in order to divide the
similarity distribution into two regions representing low and
high similarities, respectively. We take the average of the high
similarities to estimate a threshold τ to classify the currently
observed SEC sample against the existing models.

If the similarity δ is higher than τ , then the new sample will
be assigned to the best fitting (most similar) model and this
model will be updated with additional rows or columns that
might exist in the new SEC sample [9]. In this way, the model

SECs will only consist of those rows and columns observed
frequently in all type-similar manipulations. If similarity δ is
lower than τ , the novel SEC sample will be used as a new
model in the action library. In addition, we merge learned
SEC models, which have high semantic similarities, as they
are likely representing the same manipulation. The merging
process, in this case, searches for different rows and columns
in both models and appends the novel ones to the respective
model. For every new action in the library, then also a planning
operator is attached as described in section V-C.

In real experiments we observed that SECs can contain
not only noisy indexes (corresponding to individual digits in
the SEC, see Fig. Fig. 12), but also extra noisy rows and/or
columns due to noisy segmentation and tracking. Therefore,
the algorithms used for analyzing SECs have to be robust
against noise. In the following, we will discuss some statistical
results on the robustness of our similarity measure algorithm
introduced in [9].

The step of measuring the similarity between SECs plays
a crucial role for the next action monitoring step. Hence, we
address the question of how the similarity measure behaves
when the degree of noise in SECs increases. Furthermore, we
analyze the effects of such behaviors on the action classifica-
tion.

To produce more data for statistics, we first create a seed
SEC that encodes a manipulation. Figure 12 shows a sample
seed SEC that holds spatial relations between a hand, a
table, and a box. For each element of the seed, we define
a probability value (p) which represents how likely the seed
element will be changed to a dissimilar one in order to
introduce noise. The probability entries for the sample seed
are shown in Fig. 12. Such probability values are also defined
for each row and column to introduce additional noisy rows
and columns as observed in real scenarios. Note that we let
the system add maximally one noisy row/column between each
existing row/column. The p value is then varied from 0 to 1
with a step of 0.1. Fig. 12 depicts how the noisy SECs look
like at different noise levels. As expected, when p equals to
0, the noisy SEC and the seed are identical. However, at the
highest noise level (p = 1) all elements of the seed are flipped
and new noisy rows and columns (shown in red) are added.
At each noise level, 100 SEC samples are produced, each of
which is then compared with the seed by using the similarity
method given in [9].

In Fig. 13, the red curve shows the mean values with
standard error means of all 100 similarity measures, each
between the seed and one noisy sample, for the case when we
both flip the seed indexes and add noisy rows and columns to
the seed given in Fig. 12. It is obvious that the slope of the
curve is changing around p = 0.5 after which the similarity
measure is around 30%. The blue curve in Fig. 13 indicates the
mean similarity values for the case when we add only noisy
rows and columns without flipping the original SEC indexes.
In this case, the mean similarity value is still around 70%
even at noise level 0.8. Such high similarity values can only
be observed when p is 0.2 in the red curve. Those curves
prove that the noisy rows and columns do not affect the
similarity algorithm significantly as long as the original SEC



Fig. 12. Producing noisy data for statistical analysis. For each element of the seed a probability value (p)s defined. Such probability values are also used
for introducing additional noisy rows and columns. The p value is then varied from 0 to 1 with the step of 0.1. At each noise level 100 SEC samples are
produced, which are then compared with the seed. 1, 0, 9 and 2 given in the event chain stand for spatial relations touching, not-touching, absence, and
overlapping, respectively. Red elements in the SEC represent the noisy data, whereas those in black are the original seed elements.

indexes remain the same. Once the SEC indexes are flipped,
the similarity measure drops significantly. This is an important
feature showing the importance of the original SEC indexes
for the similarity measurement algorithm.

Fig. 13. Mean values of all 100 similarity measures, each for one sample,
at different noise levels. The red curve is for the cases when we both flip the
seed indexes and add noisy rows and columns to the seed given in Fig. 12.
The blue one is for the case when we add only noisy rows and columns to
the same seed. The vertical bars show the standard error mean.

Figure 13 illustrates behaviors of the similarity measures of
a 3×5 seed (see Fig. 12) for two different noisy cases. Now, we
would like to analyze the effects of such behaviors when sizes
of SECs change. For this purpose, we created four different
seeds with different sizes: 4×6, 5×7, 6×8, and 8×8. Fig. 14
shows all those SEC seeds to get an impression of the level
of difference. For each seed, we produced 100 noisy samples
at different noisy levels by following the method illustrated in
Fig. 12.

The similarity measures between SECs can be used for

classifying actions, i.e. to monitor actions. Considering the real
experiments in [9], we chose a threshold at 64% that would
be enough to distinguish action classes. In this regard, for
further statistical analysis we can make an assumption claim
that similarity between type-similar actions should be above
64% for a correct classification.

Figure 15(a) illustrates the mean similarity values with
standard error means between the four seeds defined in Fig. 14
and their noisy samples for the case when we both flip the
seed indexes and add more rows and columns to the seeds.
The first impression the figure conveys is that the similarity
measure is invariant to SEC size, since all four curves are
exhibiting similar behaviors. This figure also demonstrates
that, according to the assumption above, classification above
a noise rate of 0.2 cannot be achieved successfully due to low
similarity values.

Figure 15(b) indicates the mean similarity values between
the same four seeds and their noisy samples, but for the case
when we add only noisy rows and columns without flipping
the original seed indexes. In such a case, classification is still
applicable around noise rate 0.6, which is much better than the
previous case. One reason of such high difference is that any
change in the original SEC elements is interpreted as being
a different action representation, thus, compared to the size,
the original SEC elements are more crucial in the process
of similarity measurement. Another reason is that noisy rows
are eliminated once the correspondences between the shuffled
rows are calculated.

B. Learning on the planning level

While on the mid-level we generalize across similar actions
by merging them as described above, on the planning level
we learn the planning operators. For each single planning
operator we learn its preconditions and effects that can be



Fig. 14. Four different seeds with different sizes: 4 × 6, 5 × 7, 6 × 8, and 8 × 8. For each seed 100 noisy samples are created at each noisy level by
following the method illustrated inFig. 12.

(a) For the case when we both change the original seed indexes and add
noisy rows and columns to the seeds.

(b) For the case when we add only noisy rows and columns without
changing the original seed indexes.

Fig. 15. Similarity behavior of four SEC seeds at different noise rates. The
vertical bars show the standard error mean.

computed from the states extracted from SECs as described
in section V-C, as well as associated success probabilities
that are estimated from a large number of input actions.
These planning operators are learned in the VTB system
that provides a faster and safer environment, since until the
correct operators are learned, the robot may try to execute
useless or even dangerous actions. Once the learning phase

has been completed, the planner can be successfully integrated
in the real robot system to obtain action sequences that solve
the tasks and overcome possible contingencies as described
in section VI-B1. As for our mid-level representation based
on SECs, we also investigate the robustness of the planning
operator learning under various degrees of noise in the VTB
system.

We introduced the REX-D algorithm [61] to address the
learning phase, which is an efficient model-based reinforce-
ment learning (RL) method combined with additional human
demonstrations upon request. It can take three alternative
strategies: one is to explore the state space to improve the
model and achieve better rewards in the long term; another
is to exploit the available knowledge by executing the ma-
nipulations that maximize the reward with the current learned
model [76]; and the last one is to request a demonstration
from the teacher [60].

REX-D (Fig. 16) includes the exploration strategy of
REX [54], which applies relational generalizations to minimize
the exploration required. It explores the state space until it
reaches a known state. Once in a known state, it plans using
a Markov Decision Process (MDP) containing the known
parts of the model, and if a plan is found, it executes it
(exploitation). Note that actions may have several effects
with different probabilities, and thus, a state is considered
to be known when all planning operators applicable to that
state have been experienced previously a number of times
larger than a certain threshold. The same library of previous
experiences used to learn single actions (Sec. V-C) is used to
check if a state is known.

However, unlike REX, when no plan is found in a known
state, instead of using planned exploration, REX-D requests a
demonstration from the teacher (see section VI-B1). Actions
executed or demonstrated are learned as described in Sec. V-C,
adding the rule to the model so it can be used by the planner
and the exploration method.

The advantage of this approach is that additional actions
may be added as needed, so actions do not have to be defined
at the outset. When no solution exists with the set of actions
available, a teacher demonstration is requested and new ma-
nipulations can be taught. Moreover the learning time is also
improved by adding just a small number of demonstrations. As
the state space is usually very large, a lot of exploration may be
needed, specially when there is uncertainty in the action effects



IsKnown(state)

Observations

State

GoalPlannerExplorer

Teacher interactionExecution

Request state

Robot

Learner

Unknown Known

Plan No plan

Fig. 16. Overview of the REX-D algorithm.

as the branching becomes exponential [65], but the teacher
demonstrates optimal manipulations which already lead the
system to those parts of the state space that will produce high
rewards.

Finally, in contrast to systems with no exploration [60],
REX-D maintains the number of teacher demonstrations low
by adding autonomous exploration. It is preferable that the
robot requests demonstrations only if they are really valuable,
and explore autonomously to learn the easier parts of the
domain. For example, if an action has been executed just once,
there is still a lot of uncertainty about that action and executing
it in different states would be very profitable to complete the
model. However, when no solution can be found and all actions
are already considered as known since they have been executed
several times, the robot has no clues about what it should do to
reach the goal, and a demonstration may save a huge amount
of exploration.

1) Teacher Interaction during learning: When a demonstra-
tion is requested, several actions can be required to complete
the task, and just one of them may be unknown to the system.
If no guidance is provided, the teacher may demonstrate ac-
tions that the system already knows before he demonstrates the
action that is actually needed. To obtain good demonstrations,
the Decision Maker should inform the teacher about the reason
for failure.

There are several possible reasons for a planning failure:
preconditions may have been wrongly added, action effects
may be missing, or a dead-end may have been reached. To
determine the right explanation, we look for minimal changes
in the state that would allow the planner to find a solution,
which we will call excuses [77]. The following guidance is
given to the teacher when requesting a demonstration:
• For all possible missing effects, the teacher is warned

that the system does not know how to obtain the required
predicates.

• For all possible wrong preconditions, the teacher is
warned that an important action to reach the goal requires
an unreachable precondition.

Moreover, excuses are also used to generate subgoals to

complete all possible subtasks before requesting demonstra-
tions. In this case, excuses permit identifying the problematic
parts of the task and avoid them.

Finally, if a dead-end is reached (e.g., a piece has been
broken or has fallen out of the range of the robot), the excuse
will point at its cause. From that point on, whenever the
planned actions may lead to a dead-end, all possible effects
will be checked to ensure that the robot won’t fall again into
the dead-end, and request help from the teacher otherwise [78].

2) Probabilistic learning under increasing noise: The be-
havior of the planning system varies greatly depending on the
amount of noise. As it is a common problem in robotics,
actions are usually stochastic and have a chance of failure
or producing unexpected effects. Therefore, in this section we
analyze the performance of the decision maker with varying
levels of noise in the robot actions. The REX-D algorithm is
used to learn the Cranfield task in a simulated environment.
Different levels of noise were introduced in the action effects
to analyze the adaptability of the REX-D algorithm to uncer-
tainty.

The results are shown in Fig. 17. As can be seen, in the
deterministic case only the initial demonstrations required to
learn the actions are requested, and the number of exploration
actions executed is low. However, as the uncertainty in the
action effects increases, the complexity to learn the scenario
increases. In particular, as noise increases, extra demonstra-
tions are requested to improve the model in uncertain cases.
These few extra demonstrations allow REX-D to keep the
number of exploration actions relatively low even with high
levels of noise, as otherwise a huge number of exploration
actions would be required until the actual model could be
figured out. Moreover, note that as different action sequences
can reach the goal, new unexplored states may appear in
later episodes, and thus new exploration actions are triggered.
Finally, the results show that the REX-D algorithm adapts very
well to complex scenarios with very high levels of noise,
as even in the case of 0.4 success ratio the REX-D can
successfully learn good policies within a few episodes.

VII. MONITORING

So far we have described the information flow from a
bottom up approach where actions are learned. In this sec-
tion, we describe how the same representations are used for
monitoring during action execution by a human or the robot.
The monitoring system performs perception and interpreta-
tion of sensor inputs produced by both stereo and RGB-D
cameras. The stereo cameras provide high-quality and high-
resolution point cloud data as described in section V-A1. In
order to use the system for monitoring, we need to add two
modules to the system we have described so far. These are
the Manipulation- Recognition module described in VII-A
and the Decision Maker module described in VII-B. The
Manipulation-Recognition is based on matching the perceived
actions to the action library on a SEC level as described in
section VI-A. Based on the state information extracted from
the SECs and the associated planning operators, the Decision
Maker estimates which actions can successfully complete the



2 4 6 8 10 12 14
0

5

10

15

20

25

30

Episode

A
c
ti
o
n
s

 

 

Deterministic
p=0.8
p=0.6
p=0.4

2 4 6 8 10 12 14
0

2

4

6

8

10

Episode

T
e
a
c
h
e
r 

re
q
u
e
s
ts

 

 

Deterministic
p=0.8
p=0.6
p=0.4

2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Episode

E
x
p
lo

ra
ti
o
n
 A

c
ti
o
n
s

 

 

Deterministic
p=0.8
p=0.6
p=0.4

Fig. 17. The REX-D algorithm with different action success probabilities.
The robot started with no knowledge of the actions in the first episode.
The results shown are the means and standard deviations obtained from 100
runs. Top: Total number of action executions per episode. Middle: Number of
teacher demonstration requests per episode. Bottom: Number of exploration
actions per episode.

overall assembly task. In this way, monitoring human actions
(as well as robot actions) is possible based on mid-level
information encoded in SECs and high level information coded
in the planning operators as described in section VII-C.

A. Manipulation recognition

The task of the Manipulation-Recognition module is to
identify actions such as shaft insertion into its hole from
the sequence of SEC keyframes, i.e. columns. It does this
by matching extracted keyframes to a gallery of previously-
trained keyframes that correspond to known actions. Moreover,
it can recognize actions corresponding to the reversal of known
actions, and can signal manipulations that do not correspond
to any known action.

In principle, the Manipulation-Recognition module is capa-
ble of extracting these actions from an unsegmented stream
of keyframes, by keeping track, at all times, of all possible
actions in progress that are compatible with the recent history
of keyframes [35]. An action is then matched and recognized
in VTB by its characteristic triple of keyframes and on
the MARVIN system by its characteristic pair of keyframes
corresponding to object pick-up, object transit (VTB platform
only), and object placement. This allows the manipulation
recognition module to recognize actions by looking at the

tracked state and comparing the current keyframe with the
trained keyframes, considerably simplifying its operation [74].

B. The Decision Maker

The state information, extracted as described in section V-B,
is fed into the Decision Maker via two distinct pathways
(Fig. 1(E)). SEC keyframes are passed to the Manipulation-
Recognition module, which transforms them into a sequence
of individual manipulations. Secondly, object identities and
poses are passed to the Predicate Estimator. Both of these two
modules pass their results to the Decision Maker.

The Predicate Estimator generates the predicates required
by the Decision Maker (Sect. V-C) from scene information
extracted from sensor data (Sect. V-A). Most of the predicates
(Clear, Horizontal, PegInHole, . . . Placed) are computed from
the poses of detected and/or tracked objects. The predicate
Free employs a dedicated sensing action that checks for free
space above the hole in question.

Notably, the Predicate Estimator operates in a stateless
fashion. Rather than computing predicates such as Separa-
torPlaced by remembering already-performed actions, they
are computed by explicit sensing when needed. While this
incurs considerable computational cost, it has the advantage
that the system can detect a variety of failures and disturbances
automatically, and thanks to the stateless planner can react to
them without dedicated error-handling routines.

Based on these inputs and the learned planning operators
(Sect. V-C), the Decision Maker computes the plan with the
expected shortest distance to reach the goal. Every time an
action is executed, this plan is updated to adapt to the latest
changes perceived in the scenario.

C. Monitoring Human Actions

Besides closing the robotic perception-action loop by moni-
toring the success of robot actions, this setup allows the system
to monitor human actions. Say, a human is to perform an
assembly task. The MARVIN system has been trained and
knows about the initial and final conditions and the permissible
intermediate states. While the human performs the task, the
system keeps recognizing and tracking objects and feeding the
decision maker with state predicates and recognized actions
as described above. After each individual action, the decision
maker verifies that a valid plan exists, i.e., an action sequence
from the current state to the goal state. If no such plan exists,
it signals an error. If the shortest such plan is longer than the
shortest plan prior to the latest action, it issues a warning that
the user is deviating from the intended assembly sequence (see
section IX-B for a description of a demo showing this).

VIII. ACTION EXECUTION

In order to automatically complete an assembly task, we first
need to observe the current state of the assembly sequence (as
described in sections V-A and V-B), which allows the system
to derive a plan that specifies which action to perform at the
given state based on the learned planning operators (as de-
scribed in section V-C). This computation of the next execution



step, which is based on planning and mid-level information, is
described in section VIII-A. Furthermore, although the action
to be performed is known at the planning level, the low-level
execution of the action can be improved by learning how
to perform this action in the new context. This is done by
first performing a trajectory transformed to the current object
pose, and then fine-tuning this trajectory iteratively to the new
task context by reinforcement learning. This is done through
optimizing the similarity of the FT–profile observed during
teaching (as described in subsection V-A1) to the FT-profiles
associated to the originally recorded trajectory. This learning
process is described in subsection VIII-B.

A. Query from the planning level utilizing SEC state space
information

The REX-D algorithm includes the use of an on-line prob-
abilistic planner [79] to select the sequences of actions to
complete the tasks. It requires the planning operators learned
in VTB (Sec. VI-B), and the state derived from the SECs (Sec.
V-C). The first action in the planned sequence will be sent to
the execution modules to be performed by the robot. Once
an action has finished, the state is updated and the planner
generates an updated action sequence from this new state.
Therefore, if something unexpected happens after executing
an action, the planner will adapt afterwards and select actions
that overcome the problem.

Using a planner offers a lot of flexibility to the system,
as different goals can be requested without further learning.
The initial state of the robot may be also changed, allowing
the robot to work in other similar tasks. The used planner is
probabilistic and selects the action sequence that maximizes
the probability of reaching the goal. Consequently, it will take
into consideration all possible effects with their associated
probabilities, avoiding possible dead-ends by taking safer
actions. The main limitation of probabilistic planning is that it
uses computationally intensive algorithms, and tasks with large
state spaces and many actions become quickly intractable.

B. Force-based learning and adaptation of sensorimotor skills

As shown in Fig. 18, we addressed both the initial ac-
quisition of assembly skills, which in our system occurs
through programming by demonstration, and later adaptation
through practicing, where the initially rough skill knowledge
is adapted to the kinematic and dynamic characteristics of the
robot and the environment. The adaptation process occurs on
the fly within the execution module, which performs actions
generated by the decision maker. Skills passed to the execution
module are composed of a sequence of the desired positions
and orientations of the robot’s tool center point (TCP) and
desired tool forces and torques, expressed in Cartesian coor-
dinates. These data are obtained as described in Section IV.A
and used to compute Cartesian space Dynamic Movement
Primitives (DMPs) [80]. DMPs are a suitable representation
to control the robot motion. Within a DMP framework, a
trajectory of every robot degree of freedom is defined by
a second order linear dynamical system with an additional
nonlinear term. The nonlinear term contains free parameters

that can be used to adapt the movement generated by the dy-
namic system to the demonstrated trajectory. The desired robot
positions, velocities and accelerations are obtained through
integration of the equations describing the dynamical system.
The major benefits of DMPs are the ability to slow down the
movement via phase modulation without explicitly modifying
trajectory timing and various possibilities to modulate the
encoded motion, both spatially and temporary.

Assembly operations are generally subject to significant
orientation changes. A nonsingular description of orientation
space is provided by a unit quaternion representation. How-
ever, direct integration of unit quaternion DMPs does not
preserve the unit quaternion norm. Therefore, we represented
orientational motion with a specially designed dynamical sys-
tem for unit quaternions, where the integration occurs directly
on a manifold of unit quaternions [81], [82].

One of the major challenges of the action execution level is
the robustness to the unexpected environment changes, uncer-
tainties about the gripping pose, tolerances in the object shape,
and pose estimation errors induced by the vision subsystem.
Assembly skill sequences generated by the Decision Maker
usually involve hard contacts with the environment, which
prevents the robot from simply following the demonstrated
trajectories. Hence robust execution can only be obtained by
applying active force control strategies, which rely on on-
line adaptation to the desired force profiles minimizing the
difference between the desired and the currently measured
contact forces [27]. Since the robots used in the MARVIN
platform do not support torque control, we implemented an
admittance stiffness PI force control law [83]. For one of
the robot’s degrees of freedom, e. g. y, the commanded robot
position is calculated as

ycmd = yDMP+Kpef +Ki

∫
efdt, ef = fdesired−fy, (2)

where ycmd denotes the commanded position used to control
the robot, yDMP the desired position obtained from the DMP
integration, fy is the measured force and fdesired is the
desired force obtained from human demonstration. Kp and
Ki are positive scalars proportional and integral gain factors,
respectively. Tuning of the integral gain Ki permits a trade–
off between tracking error and stability. High gains generally
result in a faster execution, but they also make force control
less reliable. For example, high gains can cause jamming
common in assembly tasks such as peg in hole. For this
reason we used low gains for the integral term and utilized the
DMP phase modulation technique to slow down the assembly
task execution whenever excessive FT errors would arise. This
gives sufficient time to the force controller and the robot can
adapt its motion to the desired FT profile, thereby avoiding
problems such as jamming. For the non-uniform scaling of the
execution velocities, a DMP slowdown technique was used.
More details about the DMP phase modulation approach for
the Cartesian space trajectories can be found in [82].

With the proposed slowdown technique we succeeded to
increase the robustness of the system, but we also extended
the execution time. This drawback can be eliminated by
iterative learning. Especially in industry, assembly operations



usually need to be executed many times in exactly the same
configuration. In such situations humans can improve their
skill knowledge by repeating the same action over and over
again. The same approach is adopted by our system, where the
feedback control signal from the previous repetition is reused
in the current repetition of the same action. The idea is to
move the force feedback error to the position displacement.
The control law (2) then turns into

ycmd(l) = yDMP + φ(l) +Kpef (l) +Ki

∫
ef (l)dt, (3)

φ(l) = φ(l − 1) +Kpef (l − 1) +Ki

∫
ef (l − 1)dt,

where l denotes the learning cycle and φ(l) is the learned offset
signal. Initially, φ is set to 0. More details about the learning
procedure and how it is integrated into the DMP framework
can be found in [30]. In this way we achieved fast and
reliable execution using low integral gains. Results of learning
assembly operations are shown in Fig. 18. The trajectories
comprising positions and forces were captured from human
demonstration. The object was then moved to a new location,
which was estimated using vision. Due to the small errors in
the estimated position, large force deviations arose and the
algorithm slowed down the execution. After the learning was
finished, the execution speed and the desired forces were close
to the original demonstration time and original demonstrated
forces.

1 0.86 0.74 0.64 0.55 0.47 0.41 0.34
−10

0

10

Fx
 [N

]

1 0.86 0.74 0.64 0.55 0.47 0.41 0.34
−5

0

5

Fy
 [N

]

1 0.86 0.74 0.64 0.55 0.47 0.41 0.34
−20

0

20

Phase

Fz
 [N

]

 

 

1 2 3 4 5 6 7 8 9
Duration (s)

Tr
ia

ls

demo
1
2
3
4
5

Fig. 18. The upper three graphs show the sensed forces during trajectory
execution (solid lines) and the forces recorded during training (dashed lines),
all as a function of phase. The bar graph below shows the execution time in
each learning cycle.

IX. DEMONSTRATIONS OF THE SYSTEM AS A WHOLE

We have given a quantitative evaluation of individual levels
as it has been done in sections V, VI and VIII. However
due to the high degree of complexity, it is much harder
to quantitatively evaluate the system as a whole. Also it is
questionable whether such an evaluation would make sense,
since the system is in its way unique and possible failures
can be caused by many incidents: for example some failure in
the pose estimation occur due to objects being placed outside
the actual workspace. Reduction of failures caused by many
kinds of errors would be a primarily engineering task which
was outside the scope funded in a research project.

Therefore, instead of arguing about exact percentages, we
describe here the three demonstrations that have been per-
formed at the final review of the IntellAct project and give
qualitative indications about stability and frequent failures and
their reasons. These demonstrations can be watched on our
website in its full length http://caro.sdu.dk/index.php/videos.
The first two demos show how we teach in new actions using
learning by demonstration (section IX-A) as well as object
detection and tracking of multiple objects (section IX-B). The
final demonstration (section IX-C) shows the monitoring and
execution of the complete Cranfield task on our robot platform.

A. Teaching in new actions and action fine–tuning using
DMPs

The first demo shows how a single action is recorded at the
sensorimotor level by LbD. The recorded action is executed in
a new and random start position in the workspace. It is shown
how the execution time may decrease in each execution due to
the learning and optimisation of DMP parameters. In general,
we were able to achieve an execution time close to the time
the demonstrator required in the teaching process. Also FT
unwanted peaks could be largely avoided arriving at similar
forces as in the actual demonstration.

Fig. 19. The LbD demo where the user shows the system how to perform a
PiH task (green window). The forces and torques acting on the peg is recorded
(yellow window).

A video of the demo can be found here: https://youtu.be/
c4Yc3 ES2YY and Fig. 19 displays a screenshot of the demo
where the green window shows the demonstration of the task
and the yellow window shows a live plot of the forces acting
on the object being manipulated.

http://caro.sdu.dk/index.php/videos
https://youtu.be/c4Yc3_ES2YY
https://youtu.be/c4Yc3_ES2YY


B. Object detection, pose estimation, tracking and monitoring

The second video https://youtu.be/ sRnM1e5CRY shows
how object detection is used to initialize persistent object iden-
tities that are robust against occlusions and tracked throughout
the entire assembly (see Fig. 20). The video shows that the
system is able to track multiple objects while a human com-
pletes a subset of the Cranfield assembly task. Every assembly
action is recognized by the Manipulation Recognition and the
state of the system is updated according to this. The vision
system performed very robustly, however only when using
2 sets of cameras. Also pose estimation for individual pegs
turned out to be not robust enough due to their limited size
and the noise in the point clouds. To solve this problem, the
pegs were positioned in a magazine which provided enough
shape information for stable pose estimation.

Fig. 20. The object detection and manual manipulation demo.The yellow
area shows the state of the system and the current assembly state and the
green area shows the live tracking of the objects.

C. Monitoring and Robot execution

In the fourth demonstration, we show the automatic assem-
bly of the complete Cranfield benchmark (except one screwing
action) as described in Sec. III. The flow of the execution is
the following: when the system is activated, all the objects are
in the workspace of the robot. The planner knows about all
the basic assembly actions required to reach the goal state,
and the sensorimotor layer gathers information of the initial
state of the assembly by running object detection and pose
estimation on the combined point-clouds from the 3 Kinect
sensors. When the poses have been generated and the initial
state of the system has been established, the planner generates
a plan to reach the goal state and issues the actions to be
executed.

A video of the demo can be found here: https://youtu.be/
LXhzSckFy9I and Fig. 21 displays the main screen of the
demo video, where the green area shows information from
the mid level and the red area shows information from the top
level of the system.

The execution of the complete assembly process succeeded
in approximately 50% of the cases (and also at the final review
only the second attempt was successful). There are various
sources of failure. The action where most frequently error
occurred was actually the placing of the pendulum, which
usually was executed after the separator had been placed. Due

Fig. 21. The Monitoring and Robot execution video. The yellow area shows
information on the sensorimotor level. The green area shows information from
the mid level and the red area shows information from the top level of the
system.

to the very limited space between the peg and the separator, the
pose of the pendulum in the hand needed to be very accurately
placed which was not always possible due uncertainties of
the pose estimation but also uncertainties associated to the
grasping with the SDH-2 hand as such.

X. CONCLUSIONS

We have presented a system for teaching assembly actions
to robots based on a three level architecture. The system is
highly flexible and is capable of monitoring both user and
robotic manipulations of the objects. Learning is taking place
at each level using different representations and different kinds
of transfer processes. We demonstrated learning of trajectories
based on force information on the sensory-motor level, match-
ing and merging actions on the Semantic Event Chain level
as well as the learning of pre- and postconditions of planning
operators. All this learning can take place synchronously. We
have made thorough quantifications of the learning at each
level, partly making use of VR where we could introduce
different noise levels.

A significant body of technologies of high complexity
covering vision, planning, motor-control learning needed to
be introduced and integrated to arrive at our system, that had
a Technical Readiness Level (TRL) of four (validation in lab
environment) at the end of the IntellAct project. In the EU
project ReconCell (2015-2018), we aim to extend the system
to TRL six (validation in an industrial environment). By this,
the developed technology in vision, control and planning will
in particular help to reduce set-up times of future robotic
assembly solutions.

ACKNOWLEDGMENT

This work has been supported by the EU project IntellAct
(FP7-ICT-269959) and the H2020 project ReconCell (H2020-
FoF-680431).

REFERENCES

[1] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

https://youtu.be/_sRnM1e5CRY
https://youtu.be/LXhzSckFy9I
https://youtu.be/LXhzSckFy9I


[2] R. Dillmann, M. Kaiser, and A.Ude, “Aquisition of elementary robot
skills from human demonstration,” Int. Symposium on Intelligent Robotic
Systems, Oisa, Italy, 1995.

[3] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, 2004.

[4] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming
by demonstration,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer Berlin Heidelberg, pp. 1371–1394.

[5] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring
problem,” Robotics and Autonomous Systems, vol. 43, no. 2, pp. 85–
96, 2003.

[6] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
“Object-action complexes: Grounded abstractions of sensorimotor pro-
cesses,” Robotics and Autonomous Systems, vol. 59, pp. 740–757, 2011.

[7] J. Elfring, S. Van Den Dries, M. Van De Molengraft, and M. Steinbuch,
“Semantic world modeling using probabilistic multiple hypothesis an-
choring,” Robotics and Autonomous Systems, vol. 61, no. 2, pp. 95–105,
2013.

[8] G. Randelli, T. M. Bonanni, L. Iocchi, and D. Nardi, “Knowledge
acquisition through human–robot multimodal interaction,” Intelligent
Service Robotics, vol. 6, no. 1, pp. 19–31, 2013.

[9] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter,
“Learning the semantics of object-action relations by observation,” The
International Journal of Robotics Research, vol. 30, no. 10, pp. 1229–
1249, 2011.

[10] A. Stopp, S. Horstmann, S. Kristensen, and F. Lohnert, “Toward interac-
tive learning for manufacturing assistants,” Industrial Electronics, IEEE
Transactions on, vol. 50, no. 4, pp. 705–707, Aug 2003.

[11] M. Hvilshj, S. Bøgh, O. Madsen, and M. Kristiansen, “The mobile robot
”little helper”: Concepts, ideas and working principles,” in Emerging
Technologies Factory Automation, 2009. ETFA 2009. IEEE Conference
on, Sept 2009, pp. 1–4.

[12] C. Lenz, S. Nair, M. Rickert, A. Knoll, W. Rosel, J. Gast, A. Bannat, and
F. Wallhoff, “Joint-action for humans and industrial robots for assembly
tasks,” in Robot and Human Interactive Communication, 2008. RO-MAN
2008. The 17th IEEE International Symposium on, Aug 2008, pp. 130–
135.

[13] Y. Mollard, T. Munzer, A. Baisero, M. Toussaint, and M. Lopes,
“Robot programming from demonstration, feedback and transfer,” in
2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems., 2015.

[14] F. Stein and G. Medioni, “Structural indexing: Efficient 3-d object recog-
nition,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 14, no. 2, pp. 125–145, 1992.

[15] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 21, no. 5, pp. 433–449, 1999.

[16] A. S. Mian, M. Bennamoun, and R. Owens, “Three-dimensional model-
based object recognition and segmentation in cluttered scenes,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 28,
no. 10, pp. 1584–1601, 2006.

[17] S. Salti, F. Tombari, and L. Di Stefano, “Shot: Unique signatures of
histograms for surface and texture description,” Computer Vision and
Image Understanding, vol. 125, pp. 251–264, 2014.

[18] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, “A global
hypotheses verification method for 3d object recognition,” in Computer
Vision–ECCV, 2012, pp. 511–524.

[19] E. Rodolà, A. Albarelli, F. Bergamasco, and A. Torsello, “A scale
independent selection process for 3d object recognition in cluttered
scenes,” International Journal of Computer Vision, vol. 102, no. 1-3,
pp. 129–145, 2013.

[20] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3d object
recognition in cluttered scenes with local surface features: A survey,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 36, no. 11, pp. 2270–2287, Nov 2014.

[21] A. Buch, D. Kraft, J.-K. Kamarainen, H. Petersen, and N. Krüger, “Pose
estimation using local structure-specific shape and appearance context,”
in ICRA, 2013, pp. 2080–2087.

[22] T. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Multi-target tracking
using joint probabilistic data association,” in Decision and Control
including the Symposium on Adaptive Processes, 1980 19th IEEE
Conference on, vol. 19, Dec 1980, pp. 807–812.

[23] J. Papon, M. Schoeler, and F. Worgotter, “Spatially stratified correspon-
dence sampling for real-time point cloud tracking,” in Applications of

Computer Vision (WACV), 2015 IEEE Winter Conference on. IEEE,
2015, pp. 124–131.

[24] M. Isard and A. Blake, “Condensationconditional density propagation
for visual tracking,” International Journal of Computer Vision, vol. 29,
no. 1, pp. 5–28, 1998.

[25] J. Vermaak, S. Godsill, and P. Perez, “Monte carlo filtering for multi
target tracking and data association,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 41, no. 1, pp. 309 – 332, jan. 2005.

[26] B.-N. Vo, S. Singh, and A. Doucet, “Sequential monte carlo methods
for multitarget filtering with random finite sets,” IEEE Transactions on
Aerospace and Electronic Systems,, vol. 41, no. 4, pp. 1224 – 1245, oct.
2005.

[27] W. S. Newman, M. S. Branicky, H. A. Podgurski, S. Chhatpar, L. Huang,
J. Swaminathan, and H. Zhang, “Force-responsive robotic assembly
of transmission components,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 3, Detroit, Michigan, 1999, pp.
2096–2102.

[28] V. Gullapalli, R. Grupen, and A. Barto, “Learning reactive admittance
control,” in Robotics and Automation, 1992. Proceedings., 1992 IEEE
International Conference on, May 1992, pp. 1475–1480 vol.2.

[29] J. F. Broenink and M. L. J. Tiernego, “Peg-in-hole assembly using
impedance control with a 6 dof robot,” in Simulation in Industry,
Proceedings 8th European Simulation Symposium0, 1996.

[30] F. J. Abu-Dakka, B. Nemec, J. A. Jørgensen, T. R. Savarimuthu,
N. Krger, and A. Ude., “Adaptation of manipulation skills in physical
contact with the environment to reference force profiles,” Autonomous
Robots, vol. 39, pp. 199–217, 2015.

[31] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable
robot simulation framework,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 1321–
1326.

[32] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Confer-
ence on, vol. 3. IEEE, 2004, pp. 2149–2154.

[33] J. Jackson, “Microsoft robotics studio: A technical introduction,”
Robotics & Automation Magazine, IEEE, vol. 14, no. 4, pp. 82–87,
2007.

[34] C. Schlette, A. G. Buch, E. E. Aksoy, T. Steil, J. Papon, T. R.
Savarimuthu, F. Wörgötter, N. Krüger, and J. Roßmann, “A new
benchmark for pose estimation with ground truth from virtual reality,”
Production Engineering, vol. 8, no. 6, pp. 745–754, 2014.

[35] D. Martı́nez, G. Alenyà, P. Jiménez, C. Torras, J. Rossmann, N. Wantia,
E. E. Aksoy, S. Haller, and J. Piater, “Active learning of manipulation
sequences,” in Proc. of the International Conference on Robotics and
Automation, 2014, pp. 5671–5678.

[36] A. F. Bobick and J. W. Davis, “The recognition of human movement
using temporal templates,” IEEE Transactions on Pattern Analysis and
Machine intelligence, vol. 23, no. 3, pp. 257–267, Mar. 2001.

[37] C. Sminchisescu, A. Kanaujia, and D. Metaxas, “Conditional models
for contextual human motion recognition,” Computer Vision and Image
Understanding, vol. 104, no. 2-3, pp. 210–220, 2006.

[38] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor
and its application to action recognition,” in Proceedings of the 15th
International Conference on Multimedia, ser. MULTIMEDIA ’07, 2007,
pp. 357–360.

[39] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, June 2008, pp.
1–8.

[40] M. Sridhar, G. A. Cohn, and D. Hogg, “Learning functional object-
categories from a relational spatio-temporal representation,” in Proc.
18th European Conference on Artificial Intelligence, 2008, pp. 606–610.

[41] H. Kjellström, J. Romero, and D. Kragić, “Visual object-action recogni-
tion: Inferring object affordances from human demonstration,” Computer
Vision and Image Understanding, vol. 115, no. 1, pp. 81–90, jan 2011.

[42] Y. Yang, C. Fermüller, and Y. Aloimonos, “Detection of manipulation
action consequences (mac),” in International Conference on Computer
Vision and Pattern Recognition (CVPR), 2013, pp. 2563–2570.

[43] K. Nagahama, K. Yamazaki, K. Okada, and M. Inaba, “Manipulation of
multiple objects in close proximity based on visual hierarchical relation-
ships,” in IEEE International Conference on Robotics and Automation,
May 2013, pp. 1303–1310.

[44] K. Ramirez-Amaro, E.-S. Kim, J. Kim, B.-T. Zhang, M. Beetz, and
G. Cheng, “Enhancing Human Action Recognition through Spatio-
temporal Feature Learning and Semantic Rules,” in IEEE-RAS Int. Conf.
Humanoid Robots, October 2013.



[45] P. Peursum, H. H. Bui, S. Venkatesh, and G. A. W. West, “Human
action segmentation via controlled use of missing data in hmms.” in
International Conference on Pattern Recognition, 2004, pp. 440–445.

[46] F. Lv and R. Nevatia, “Recognition and segmentation of 3-d human
action using hmm and multi-class adaboost,” in European Conference
on Computer Vision - Volume Part IV, 2006, pp. 359–372.

[47] M. Hoai, Z. zhong Lan, and F. De la Torre, “Joint segmentation
and classification of human actions in video,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2011.

[48] Q. Shi, L. Cheng, L. Wang, and A. Smola, “Human action segmentation
and recognition using discriminative semi-markov models,” Interna-
tional Journal of Computer Vision, vol. 93, no. 1, pp. 22–32, 2011.

[49] H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities
and object affordances from rgb-d videos,” The International Journal of
Robotics Research, vol. 32, no. 8, pp. 951–970, 2013.

[50] A. Gupta, A. Kembhavi, and L. Davis, “Observing human-object interac-
tions: Using spatial and functional compatibility for recognition,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 31, no. 10,
pp. 1775–1789, Oct 2009.

[51] E. E. Aksoy, M. Tamosiunaite, and F. Wörgötter, “Model-free incre-
mental learning of the semantics of manipulation actions (in press),”
Robotics and Autonomous Systems (RAS), vol. 71, pp. 118–133, 2014.

[52] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented representa-
tion for efficient reinforcement learning,” in Proc. of the International
Conference on Machine learning, 2008, pp. 240–247.

[53] C. Rodrigues, P. Gérard, and C. Rouveirol, “Incremental learning of
relational action models in noisy environments,” in Proc. of the Inter-
national Conference on Inductive Logic Programming. Springer, 2011,
pp. 206–213.

[54] T. Lang, M. Toussaint, and K. Kersting, “Exploration in relational
domains for model-based reinforcement learning,” Journal of Machine
Learning Research, vol. 13, pp. 3691–3734, 2012.

[55] Ç. Meriçli, M. Veloso, and H. L. Akın, “Multi-resolution corrective
demonstration for efficient task execution and refinement,” International
Journal of Social Robotics, vol. 4, no. 4, pp. 423–435, 2012.

[56] T. J. Walsh, K. Subramanian, M. L. Littman, and C. Diuk, “Generalizing
apprenticeship learning across hypothesis classes,” in Proc. of the
International Conference on Machine Learning, 2010, pp. 1119–1126.

[57] W. B. Knox and P. Stone, “Interactively shaping agents via human rein-
forcement: The tamer framework,” in Proc. of International Conference
on Knowledge Capture. ACM, 2009, pp. 9–16.

[58] D. H. Grollman and O. C. Jenkins, “Dogged learning for robots,” in
Proc. of International Conference on Robotics and Automation, 2007,
pp. 2483–2488.

[59] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence Research,
vol. 34, no. 1, pp. 1–25, 2009.

[60] A. Agostini, C. Torras, and F. Wörgötter, “Integrating task planning and
interactive learning for robots to work in human environments.” in Proc.
of the International Joint Conference on Artificial Intelligence, 2011, pp.
2386–2391.

[61] D. Martı́nez, G. Alenyà, and C. Torras, “Relational reinforcement
learning with guided demonstrations,” Artificial Intelligence, 2015.

[62] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, and K. Inoue,
“Learning revised models for planning in adaptive systems,” in Proceed-
ings of the International Conference on Software Engineering, 2013, pp.
63–71.

[63] L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl, “Knows what it
knows: a framework for self-aware learning,” Machine learning, vol. 82,
no. 3, pp. 399–443, 2011.

[64] T. J. Walsh, I. Szita, C. Diuk, and M. L. Littman, “Exploring compact
reinforcement-learning representations with linear regression,” in Proc.
of the Conference on Uncertainty in Artificial Intelligence, 2009, pp.
591–598.

[65] T. Walsh, “Efficient learning of relational models for sequential decision
making,” Ph.D. dissertation, Rutgers, The State University of New
Jersey, 2010.

[66] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research, vol. 29, no. 1, pp. 309–352, 2007.

[67] J. Roßmann, E. Guiffo Kaigom, L. Atorf, M. Rast, G. Grinshpun, and
C. Schlette, “Mental models for intelligent systems: eRobotics enables
new approaches to simulation-based AI,” KI-Künstliche Intelligenz,
vol. 28, no. 2, pp. 101–110, 2014.

[68] M. Schluse, C. Schlette, R. Waspe, and J. Roßmann, “Advanced 3d
simulation technology for eRobotics,” in International Conference on
Developments in eSystems Engineering (DeSE), 2013, pp. 151–156.

[69] J. Roßmann, C. Schlette, and N. Wantia, “Virtual Reality in the loop
providing an interface for an intelligent rule learning and planning
system,” in Workshop on Semantics, Identification and Control of
Robot-Human-Environment Interaction at International Conference on
Robotics and Automation (ICRA), 2013, pp. 60–65.

[70] J. Roßmann, T. Steil, and M. Springer, “Validating the camera and light
simulation of a virtual space robotics testbed by means of physical
mockup data,” in International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS), 2012, pp. 1–6.

[71] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
PAMI, vol. 14, no. 2, pp. 239–256, 1992.

[72] J. Papon, T. Kulvicius, E. Aksoy, and F. Worgotter, “Point cloud video
object segmentation using a persistent supervoxel world-model,” in
IROS, 2013, pp. 3712–3718.

[73] T. R. Savarimuthu, J. Papon, A. G. Buch, E. E. Aksoy, W. Mustafa,
F. Wörgötter, and N. Krüger, “An online vision system for understanding
complex assembly tasks,” in International Conference on Computer
Vision Theory and Applications (VISAPP).

[74] T. R. Savarimuthu, A. G. Buch, Y. Yang, W. Mustafa, S. Haller, J. Papon,
D. Martınez, and E. E. Aksoy, “Manipulation monitoring and robot
intervention in complex manipulation sequences,” Workshop on Robotic
Monitoring (at the Robotics: Science and Systems conference), 2014.

[75] N. Otsu, “A Threshold Selection Method from Gray-level Histograms,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp.
62–66, 1979.

[76] R. I. Brafman and M. Tennenholtz, “R-max-a general polynomial time
algorithm for near-optimal reinforcement learning,” Journal of Machine
Learning Research, vol. 3, pp. 213–231, 2003.

[77] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel,
“Coming up with good excuses: What to do when no plan can be found.”
in Proc. of the International Conference on Automated Planning and
Scheduling, 2010, pp. 81–88.

[78] D. Martı́nez, G. Alenyà, and C. Torras, “Safe robot execution in model-
based reinforcement learning,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2015.

[79] A. Kolobov, Mausam, and D. S. Weld, “Lrtdp versus uct for online
probabilistic planning,” in Proc. of the AAAI Conference on Artificial
Intelligence, 2012.

[80] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical Movement Primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[81] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online move-
ment adaptation based on previous sensor experiences,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), San
Francisco, California, 2011, pp. 365–371.

[82] A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in cartesian
space dynamic movement primitives,” in International Conference on
Robotics and Automation (ICRA), Hong Kong, 2014, pp. 2997–3004.

[83] L. Villani and J. De Schutter, “Force control,” in Springer Handbook of
Robotics, B. Siciliano and O. Khatib, Eds. Berlin, Heidelberg: Springer,
2008, pp. 161–185.


	Introduction
	State of the Art
	System Level
	Processing on the sensorimotor level and low-level simulation
	Mid-level SEC representation
	High-level planning system and Execution

	Cranfield benchmark and MARVIN platform
	Virtual Testbed support for system development and optimization
	Recording single Actions
	The Sensorimotor level
	Recording motor information
	The vision system

	Associating SECs as mid-level representation
	Association of planning operators to SECs

	Learning Action Sequences
	Matching and generalization of SECs
	Learning on the planning level
	Teacher Interaction during learning
	Probabilistic learning under increasing noise


	Monitoring
	Manipulation recognition
	The Decision Maker
	Monitoring Human Actions

	Action Execution
	Query from the planning level utilizing SEC state space information
	Force-based learning and adaptation of sensorimotor skills

	Demonstrations of the system as a whole
	Teaching in new actions and action fine–tuning using DMPs
	Object detection, pose estimation, tracking and monitoring
	Monitoring and Robot execution

	Conclusions
	References

