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Abstract— A requirement for the humanoid robot’s operation
in natural environments is that a humanoid robot can effectively
adapt to new configurations of the external world. In this
paper we address the problem of adaptation, where new
robot movements are generated based on data accumulated in
related but different situations. Our solution to this challenge
is to apply statistical learning, which provides a method to
generate robot responses in new situations. Building on our
previous work on learning motor primitives [1], we propose a
new methodology for task-specific generalization of orientation
trajectories, which we encode as Cartesian space Dynamic
Movement Primitives. Example trajectories are generalized by
applying Locally Weighted Regression in unit quaternion space,
using the parameters describing the task as query points into
the trajectory database. We show on real-world and simulated
tasks that the proposed methodology can be used for statistical
learning of orientation trajectories.

I. INTRODUCTION

Statistical learning has extensively been used in robotics
to synthesize humanoid robot trajectories, appropriate for a
new task within the training space, from a set of recorded
movements [1]. Methods such as locally weighted regression
(LWR) [2] and Gaussian process regression (GPR) [3] have
been previously applied for generalization of joint space tra-
jectories in the framework of dynamic movement primitives
[1]. However, planning of trajectories in Cartesian space
does not allow direct application of these methods, because
there exists no minimal, singularity-free representation of
orientation [4]. For example, the quaternion representation
as a singularity free but non-minimal representation of ori-
entation with only 4 parameters (compared to 9 parameters of
rotation matrices) fulfils an additional constraint in 4-D space
(unit norm) to describe a manifold of all orientations. Such
constraints are not taken into account by general learning
methods, and thus they are not preserved when learning from
parameters that are constrained to a specific manifold.

In this paper we show how to apply the aforementioned
LWR for generalization of orientation trajectories in such a
way that that the generalized trajectory is guaranteed to lie on
the orientation constraint manifold. We use Cartesian space
DMPs – CDMPs originally proposed by Ude et al. [4] – as
the underlying representation for orientation trajectories. This
approach integrates the equations of motion directly on the
orientation manifold and is therefore guaranteed to generate
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Fig. 1. Operator teaching an example movement by physically guiding the
humanoid robot arm along the desired trajectory. The demonstrated motion
is recorded in Cartesian space.

quaternions with unit norm. A related approach for learning
orientation trajectories was proposed by Pastor et al. [5].

The use-case example in this paper focuses on the gener-
alization of orientation trajectories, acquired through kines-
thetic guiding, as shown in Fig. 1.

This paper is organized as follows. After the related
work in Section II, we review the details of the Cartesian
space DMPs and the required mathematical tools in Section
III. LWR based generalization is presented in Section IV.
The experimental evaluation follows in Section V, with
conclusions given in Section VI.

II. RELATED WORK

Two main topics characterize related work: trajectory
representation and generalization methods. The choice of one
typically also affects the other.

Several statistical methods were successfully applied in
robotics within the framework of dynamic movement prim-
itives (DMP) [6], for example locally weighted regression
(LWR) [1], locally weighted projection regression (LWPR)
[7], and Gaussian process regression (GPR) [3]. Furthermore,
generation of new control policies from existing knowledge,
i. e. generalization, was demonstrated by Matsubara et al.
[8], showing extended scalability of DMPs. Mixture of motor
primitives was used for generation of table tennis swings in
[9]. Generalization of DMPs was also combined with model
predictive control by Krug and Dimitrov [10]. Similarly,
Stulp et al. proposed learning a function approximator with
one regression in the full space of phase and tasks parame-
ters, bypassing the need for two consecutive regressions [11].
Generalization using GPR was applied over combined joint
position torque trajectories in the framework of compliant
movement primitives [12], extending the DMP framework
beyond the kinematic trajectory properties. Generalization
was also applied to DMP coupling terms [13], which were



learned and later added to a demonstrated trajectory to
generate new joint-space trajectories.

DMPs were not the only trajectory representation used
in generalization. For example [14] used Gaussian mixture
models. These were extensively applied by Calinon for
generalization, with an excellent tutorial and an overview
provided in [15]. A collection of task-parameterized models
provides a representation of movement / behavior that can
adapt to a set of task parameters describing the current
situation encountered by a robot, such as location of objects
or landmarks in its workspace. These task parameters can
be interpreted as queries for generalization as used by the
approach presented in this paper. We relate the reader to
[15] for a broader review of generalization methods from a
set of learned robot movements.

III. CARTESIAN SPACE DMPS – CDMPS

For the sake of clarity and completeness of the paper, we
first review the orientation part of Cartesian space DMPs,
which uses unit quaternions, and the required mathematical
formulation for the generalization. We relate the reader to
[4] for a more complete description of CDMPs.

A CDMP has the following free parameters: weights
wwwp

i ,www
o
i ∈ R3, i = 1, . . . ,N, where N is the number of basis

functions used to approximate the movement, trajectory
duration τ and the final position gggp and orientation gggo of the
robot. The orientation is represented as the unit quarternion
qqq= v+uuu∈ S3, where S3 is a unit sphere in R4, with the scalar
part v ∈ R and the vector part uuu ∈ R3. In this paper we use
the quaternion CDMP formulation to encode the orientations,
given by

τη̇ηη = αz (βz2log(gggo ∗qqq)−ηηη)+ fo(x), (1)

τq̇qq =
1
2

ηηη ∗qqq, (2)

τ ẋ = −αx. (3)

The nonlinear forcing term of the CDMP fo is defined as

fo(x) =DDDo
∑

N
i=1 wwwo

i Ψi(x)

∑
N
i=1 Ψi(x)

x, (4)

and contains free parameters wwwo
i ∈ R3, which need to

be determined to encode any given orientation trajectory
{qqq j,ωωω j, ω̇ωω j, t j}T

j=1. DDDo ∈R3×3 is a scaling matrix that can be
set to DDDo = III, but see [4] for other possibilities. The Gaussian
kernel functions are defined by

Ψi(x) = exp
(
−hi (x− ci)

2
)
, (5)

where ci are their centers, distributed along the phase of
the movement and hi their widths. For a given N and
setting the time constant τ equal to the total duration of
the desired movement, we can define ci = exp

(
−αx

i−1
N−1

)
,

hi =
1

(ci+1− ci)2 , hN = hN−1, i= 1, . . . ,N. For each Cartesian

degree of freedom, the weights wi should be adjusted so that
the desired behavior is achieved. Goal orientation and time
duration are given as gggo = qqqT and τ = tT − t1, respectively.

Equation (2) is derived from the equation that connects
quaternion derivative q̇qq(t) and angular velocity ωωω(t). This
relation is given by

q̇qq =
1
2
(0,ωωω)∗qqq. (6)

From (2) and (6) we obtain ηηη = τωωω . Note that in (2), ηηη ∈R3

is treated as quaternion with 0 scalar part. Conjugation of
quaternions is denoted by bar and defined as qqq = v+uuu =
v−uuu. The asterisk ∗ denotes the quaternion multiplication
on S3, defined as

qqq1 ∗qqq2 = (v1 +uuu1)∗ (v2 +uuu2) (7)
= (v1v2−uuuT

1uuu2)+(v1uuu2 + v2uuu1 +uuu1×uuu2).

The above product of two unit quaternions is always another
unit quaternion.

The quaternion logarithm log : S3 7→ R3, which is one of
the operations in (1), is defined as

log(qqq) = log(v+uuu) =


arccos(v)

uuu
‖uuu‖

, uuu 6= 0

[0,0,0]T, otherwise
. (8)

The quaternion logarithm log(qqq2 ∗qqq1) can be interpreted as
a difference vector between two unit quaternions qqq1 and qqq2.
It can be used to define a distance metrics on S3

d(qqq1,qqq2) =

{
2π, qqq2 ∗qqq1 =−1+[0,0,0]T

2‖ log(qqq2 ∗qqq1)‖, otherwise
(9)

The logarithmic map (8) is bijective if we limit its domain to
S3/{(−1, [0,0,0]T)}. Its inverse, the exponential map exp :
R3 7→ S3, is defined as

exp(rrr) =


cos(‖rrr‖)+ sin(‖rrr‖) rrr

‖rrr‖
, rrr 6= 0

0, otherwise
(10)

If we limit the domain of the exponential map to ‖rrr‖ < π

and of the logarithmic map to S3/{(−1, [0,0,0]T)}, then both
mappings become one-to-one, continuously differentiable
and inverse to each other.

Lets represent an orientation trajectory as a time dependent
unit quaternion function qqq(t). Given the starting orientation
qqq(t) and angular velocity ωωω(t) (assumed constant on time
interval [t, t +∆t]), we can calculate the orientation at the
next integration time t +∆t as follows

qqq(t +∆t) = exp
(

∆t
2

ωωω

)
∗qqq(t) = exp

(
∆t
2τ

ηηη

)
∗qqq(t). (11)

This formula is used to numerically integrate Eq. (2).
In the next section we show how we can exploit this

representation for orientation trajectories when generalizing
CDMPs.



IV. GENERALIZATION

In this paper we focus on generalization of orientation
trajectories recorded as unit quaternions and encoded as
DMPs, through locally weighted regression (LWR). The
challenge is to ensure that the generalization method acts in
the correct space and preserves the norm of unit quaternions.

A. Database for Generalization

The database is composed of the data recorded with
kinesthetic guiding [16], with the collection for the presented
use case shown in Fig. 1. The acquired movement trajectories
are recorded in Cartesian space. To record the database, the
operater grabs the robotic arm and guides it along the desired
trajectory.

The following data is recorded: Cartesian space posi-
tions and orientations, their first and second derivatives
(linear/angular velocities and accelerations)

Ad = {pppi j,qqqi j, ṗppi j,ωωω i j, p̈ppi j,ω̇ωω i j, ti j}NumEx, Ti
i=1, j=1, , (12)

all recorded at times ti j, j = 0, ...,Ti. Ti is the number
of samples in the i-th recording, with i = 1, . . . ,NumEx,
denoting the index of the recording, and NumEx the number
of recordings (example trajectories in the library). Orienta-
tions are recorded as unit quaternions qqq = v+uuu ∈ R4. An
external condition of the task (query) is recorded with each
demonstration,

Sd = {sssi}NumEx
i=1 . (13)

In the real robot experiment presented in Section V, the
external condition of the task sssi was one dimensional and
equal to the starting angle ϑi of the valve turning motion.
However, in general the dimension of the query point can be
higher than one.

The generalization process applies LWR to compute new
trajectories, using the data associated with query points sssi
close to the desired query point sss

G(Ad ,Sd) : sss→ [wwwpT, wwwoT, τ, gggpT, gggoT]T. (14)

Here G(Ad ,Sd) is the generalization function that maps
a given query point sss into the new position wwwp, τ, gggp,
and orientation wwwo, τ, gggo, DMP parameters, separately
for the position (using the method described in [1]) and
orientation part (see below). Here wwwp = [wwwp

1
T
, . . . ,wwwp

N
T
]T and

wwwo = [wwwo
1

T, . . . ,wwwo
N

T]T. Note that the generalized τ is shared
among position and orientation part of the trajectories.

B. Generalization of Shape Parameters using LWR

Locally weighted regression (LWR) [2] is a non-
parametric method for statistical approximation, which uses
raw data stored in memory to determine its output. This
approach was used for generalization of joint position tra-
jectories in [1], where it was applied to generalize throwing,
reaching, and drumming movements. In contrast to our pre-
vious work, we here focus on generalization of orientation,
which was not solved before.

As explained in [1], the generalization of position trajecto-
ries can take place separately for each dimension. Therefore,

three instances of LWR are executed to generalize to the
new query for each dimension. This cannot be analogously
applied to the generalization of unit quaternion trajectories
because the resulting generalized orientation will not pre-
serve the norm, and will require normalization. This reduces
the quality of approximation.

To apply locally weighted regression to unit quaternion
trajectories, we designed a new procedure that generalizes
among the differences between orientation trajectories as
defined by Eq. (19) instead of quaternion trajectories (12)
directly. The main advantage of this approach is that the
difference trajectories are not constrained to unit norm as
the quaternion trajectories are. Once a new query point sss has
been received, we search for the closest query point in the
training data

k = argmin
i
{‖sss−sssi‖}. (15)

We then calculate the unit quaternion DMP qDMP
k for orien-

tation trajectory closest to the given query point sss, i. e.

{qqqk j,ωωωk j,ω̇ωωk j, tk j}Tk
j=1. (16)

Lets select the tricube weighting kernel K [2] for locally
weighted regression

K(sss,sss′) =

{
(1− (‖sss−sss′‖/h)3)3 if ‖sss−sss′‖/h < 1
0 otherwise

.

(17)
Only training data with query points sssi, for which the dis-
tance to the current query sss is smaller than h, are considered
when performing locally weighted regression as K(sss,sssi) is
equal to zero for all other i. We now compute a new training
data set

A ′
d = {rrri j, ti j}NumEx, Ti

i=1, j=1 , (18)

where

rrri j = log
(
qqqi j ∗qqqDMP

k (xi j)
)
∈ R3, (19)

xi j = exp
(
−αx

τi
ti j

)
. (20)

Note that τi = tiTi − ti1. More importantly, unlike the unit
quaternion data qqqi j, the difference vectors are unconstrained,
rrri j ∈R3. Hence locally weighted regression can be applied to
these data. Another important point is that data in (19) corre-
spond to a rotation vector representation of orientation, also
called exponential coordinates [17], which as every minimal,
i. e. 3-D representation, contains singularities. However, as
explained below these singularities are not a problem because
locally weighted regression uses only nearby data to calculate
a new orientation trajectory.

Instead of directly computing the orientation trajectory
qDMP associated with query point sss, we first compute the
generalized difference trajectory r associated with that query
point. Lets write this difference trajectory as a linear combi-
nation of radial basis functions (RBF)

r(x) =
N

∑
i=1

vvviΨi(x)

∑
N
j=1 Ψ j(x)

x. (21)



For each dimension l of rrr and vvv, l = 1,2,3, the application
of locally weighted regression results in the following least-
squares optimization problem

min
vvvl

NumEx

∑
i=1
‖XXX ivvvl−rrrl

i‖2K(sss,sssi), (22)

where

rrrl
i =

[
rl

i1 . . . rl
iTi

]T
, (23)

vvvl =
[

vl
1 . . . vl

N
]T

, (24)

XXX i =



Ψ1(xi1)

∑
N
j=1 Ψ j(xi1)

xi1 · · · ψN(xi1)

∑
N
j=1 ψk(xi1)

xi1

...
. . .

...
ψ1(xiTi)

∑
N
j=1 Ψ j(xiTi)

xiTi · · ·
ψN(xiTi)

∑
N
j=1 Ψ j(xiTi)

xiTi

 (25)

Note that in the above LWR formulation only those i
for which K(sss,sssi) > 0 affect the result. This is important
because the orientation representation with rotation vector
rrr is minimal and therefore contains singularities. But since
K(sss,sssi) > 0 is true only in the neighbourhood of sss, the
relevant difference vectors rrri j remain small, assuming that
the orientation trajectories in (12) smoothly transition be-
tween each other. Since the rotation vector representation
contains no singularities in the neighborhood of rrr = 0, the
optimization problem (22) avoids any critical areas where the
rotation vector representation becomes discontinuous. Thus
the optimization problem (22) remains well defined.

To control the orientation of the robot, we need to calculate
a Cartesian space DMP. This is accomplished by transform-
ing the optimal rotation trajectory (21) back to quaternion
representation using the formula

qDMP(x) = exp(r(x))∗qDMP
k (x). (26)

While it is possible to use this formula directly to control a
robot, it is better to sample the resulting orientation trajec-
tory, typically at robot servo rate, and compute new shape
parameters wwwo from the sampled data using Cartesian DMP
estimation techniques developed in [4]. For these calculations
we first need to generalize duration τ and goal orientation
gggo, which we do using methods described in Section IV-C.
This way we can exploit all advantages of DMPs, which is
not possible with representation (26).

C. Generalization of Goal Orientation and Time Duration

The goal positions and orientations as well as durations
are directly available in the data. They are given as

gggp
i = pppiTi , gggo

i = qqqiTi
, τi = tiTi − ti1, i = 1, . . . ,NumEx. (27)

Given a new query point sss and using LWR, the goal position
and time duration can be generalized as follows

gggp =
NumEx

∑
i=1

K(sss,sssi)ggg
p
i

∑
NumEx
j=1 K(sss,sss j)

, (28)

τ =
NumEx

∑
i=1

K(sss,sssi)τi

∑
NumEx
j=1 K(sss,sss j)

. (29)

Since we cannot add unit quaternions, a different method has
to be used to generalize goal orientations. One possibility is
to solve the following optimization problem

min
gggo∈S3

NumEx

∑
i=1

d(gggo,gggo
i )K(sss,sssi), (30)

where d is a metric on a 4-D unit sphere defined in (9). Opti-
mization problem (30) is nonlinear and can be solved using
iterative methods such as Newton’s method. The iteration
process can be initialized with the following approximation

qqq0 =
∑

NumEx
i=1 K(sss,sssi)gggo

i

‖∑
NumEx
i=1 K(sss,sssi)gggo

i ‖
. (31)

V. EXPERIMENTAL EVALUATION

A. In Simulation

We first tested the proposed method in simulation. For
the database of orientation trajectories, we synthesized an
example set of 11 minimum jerk SLERP trajectories, de-
picted with blue in Fig. 2. The synthetic trajectories all
start at the same orientation and finish at different ones.
The trajectories transition smoothly between each other with
an even distribution. The final orientation values of the
trajectories were used as query points sss.

For generalization we first calculated the set of rotation
differences vectors (18), shown in blue in Fig. 3. These
data are used to compute generalized difference trajectories,
shown in red in Fig. 3. These are then used to obtain the
generalized orientation trajectories using formula (26), which
guarantees to generate unit quaternions. The final outcome
of generalization is shown in red in Fig. 2.
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Fig. 2. Synthesized database for generalization between minimum jerk
SLERP trajectories, represented as quaternions qqq = v+uuu. The simulated
trajectories are shown in blue, while the resulting LWR generalized trajec-
tories are red.
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Fig. 3. Generalization of rotation difference vectors calculated from
example trajectories in blue. Red color represents the generalized rotation
difference vectors, which are used to calculate the new generalized orienta-
tion trajectories.

Using (9) we calculated the differences between the LWR
generalized orientation trajectories depicted in Fig. 2 and the
corresponding minimum jerk SLERP trajectories at the same
queries. The results are shown in Fig. 4. The differences for
the two trajectories at the edge of the database are shown in
red and green, and the other 8 differences in blue. All the
differences are very small, but generalization close to either
edge of the database increases the error, in this particular
case for an order of magnitude. This is consistent with what
was reported for joint trajectories [1].

B. On a Real System

After the initial results from simulation turned out to
be promising, we carried out experiments to confirm the
performance of the proposed approach on a real robot.
The experiment was performed with a 7 DOF Kuka LWR-
4 robot, where the challenge was to turn a valve, shown
in Fig. 5, from any starting angle (inside the work space
of the robot). An additional challenge was to generalize
human demonstrated trajectories which are not as refined
and smooth as the synthesized ones.

5 example movements were demonstrated with kinesthetic

0 1 2 3 4 5
t[s]

0

0.005

0.01

d

One Edge
Central 8
Other Edge

Fig. 4. The difference between the LWR generalized trajectories and
the corresponding minimum jerk SLERP trajectories at the same queries,
calculated using (9). The errors of the two trajectories generalized close to
the edge of the database are depicted in green and red, while all other 8 are
depicted in blue.

-45° 45°

0°
22.5°-22.5°

Fig. 5. Valve for testing the proposed method on a real system. Blue color
indicates the demonstrated example queries (angles), while the green arrow
shows an example query for generalization.

guiding, as shown in Fig. 1. Each started at a different
starting angle of the valve and this angle was used as
a query. The database query values were given as Sd =
{−45◦,−22.5◦,0◦,22.5◦,45◦}. The database query points,
depicted in the plane of the valve, are shown in blue in Fig. 5.
All trajectories ended in the same configuration of the robot.
Note that the plane of the valve was at an arbitrary angle
towards the robot. See also the accompanying video, which
depicts both the database generation and the execution of the
generalized trajectories.

The recorded database of movements, shown in blue in
Fig. 6, was used to generalize to new movements according
to the rotation angle of the valve (query), which was deter-
mined with a rotation sensor. The results, shown in red in Fig.
6, demonstrate successful generalization with LWR for query
points sssi = {−40◦,−30◦,−20◦,−10◦,0◦,5◦,25◦,35◦}. Fig. 8
shows the database (blue) and the generalized (red) rotation
difference vectors. The real-world generalization results are
comparable to simulation results. To generate the real robot
motion, we also had to generalize position trajectories using
the method proposed in [1]. The generalized position trajec-
tories are depicted in Fig. 9. As evident from the attached
video and Fig. Fig. 7, the robot was able to successfully
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Fig. 6. The database of real orientation trajectories (blue) and the
generalized trajectories (red).



Fig. 7. Still images of the humanoid robot performing a valve-turning motion for the starting angle at 25◦.

perform the task using the proposed approach.

VI. CONCLUSION

In this work we proposed a new approach for statis-
tical generalization of orientation trajectories represented
as unit quaternion trajectories [4]. The proposed approach
complements the methods for task-specific generalization
of position DMPs, which were initially proposed by Ude
et al. [1]. The proposed method supports generic task de-
scriptors, which are used as query points into a database
of orientation trajectories. Locally weighted regression was
used for generating new orientation trajectories. In LWR
nearby data points are given higher weights than the distant
ones, providing for good generalization performance. The
proposed approach resolves the problem of maintaining the
norm of unit quaternions after generalization.

We tested the developed methods both in simulation and
for learning real humanoid robot trajectories, proving its
efficiency. As future work we plan to extend the proposed
methods for generalization of Cartesian space trajectories to
movements that involve contact with the environment.
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Fig. 9. Database of real position trajectories and the generalized position
trajectories, which complement the orientation trajectories in Fig. 6.


