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Abstract— Robots operating in contact with the environment
should typically take into account the knowledge of both
position/orientation trajectories as well as the accompanying
force/torque profiles for successful execution. Pure position
control is not appropriate because even small errors in the
desired trajectory can cause significant forces at the contact
points. In this paper we present a method that computes an
appropriate control policy for a given condition of a contact
task, with the peg-in-hole (PiH) assembly tasks as example use-
cases. Our method is based on statistical generalization of suc-
cessfully recorded executions at different values of the external
condition. The major novelty of the method is that it provides
not only generalized position and orientation trajectories, but a
complete skill, consisting of desired position/orientation trajec-
tories and the accompanying force/torque profiles. To improve
the execution of the skill after generalization, we combine the
proposed approach with an adaptation method to refine the
newly generated movement. The versatility of the proposed
approach was shown by applying it to firstly, two different
types of robot arms: a humanoid 7-axis Kuka LWR-4 arm and
a 6-axis industrial Universal robot UR5 arm and secondly, two
different peg-in-hole problems: insertion of a square peg and
insertion of a round peg.

I. INTRODUCTION

Nowadays, many small and medium enterprises are trying
to shift their production lines from mass production to mass
customization of products. The impact of this trend is that
the production systems have to adapt to handle more product
variations, shorter life cycles, and smaller batch sizes. One of
the main enablers of this transition is robotics and specifically
robotic systems that can cope with uncertainty in interactions
with humans, handle a variety of different tasks, and are able
to be reprogrammed fast by non-robot experts when a new
task in the factory arises.

The backbone of our approach to teaching robot skills
is Programming by Demonstration (PbD) and statistical
learning of robot trajectories. Traditionally, programming by
demonstration has been applied to robots such as humanoids
because the transfer of human body motion to humanoids
is more natural than the tranfer to other types of robots.
However, recent work on learning by demonstration [1], [2],
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e. g., through kinesthetic guiding [3]–[5] of robotic arms, has
provided the necessary framework for knowledge transfer not
only to humanoids but also to more standard industrial robots
because with kinesthetic guiding we can avoid the problem
of motion transformation. This is the case also with the
method proposed in this paper, which is suitable for learning
of robot operations in contact with the environment and has
been tested both on an anthropomorphic arm as well as on
a conventional 6-axis industrial arm.

More specifically, we developed a new approach for
generalization of contact-rich robotic skills and applied it
to a classical robotic assembly task: the peg-in-hole (PiH)
insertion, although other applications are also possible. The
gist of our approach is in adapting to an external condition,
which defines the task and can result in significant changes
in the required robot motion, which cannot be handled by
feedback control and fine adaptation only. In the PiH case,
this external condition – used as a query into a library of
demonstrated movements – can for example be the depth of
the hole.

To successfully execute the PiH task, a robot must perform
trajectories which generate force/torque profiles that are
suitable for a successful PiH execution. Thus the robot cannot
execute such tasks using position control only because even
small errors in the desired trajectory can cause significant
deviations from the desired forces and torques [6]. However,
when the external condition of the task, e. g. the depth of
the hole, changes, new position/orientation trajectories as
well as new force/torque profiles are needed. The major
novelty of the proposed method is that it allows the transfer
of the learned skill that involves position and force control
from multiple known conditions of the task, to new, not
previously known conditions, therefore providing all the
required trajectories and force/torque profiles. Previously
developed adaptation methods can then be applied to refine
the generalized motion [6]–[8].

In a typical learning by demonstration setup, position and
orientation trajectories are recorded. However, for tasks that
involve contacts with the environment, e. g. PiH, forces and
torques also have to be taken into account.

A widely accepted approach in PbD is to encode the
trajectories with dynamic movement primitives (DMP) [9].
This framework enables efficient modulation of trajectories
while they are being executed, both spatially and temporally,
because they are not explicitly time dependent. Schaal et al.
[10] explain that direct time dependence is often inappropri-
ate, since it does not allow to change the speed of execution.
Furthermore, it does not allow stopping or restarting robotic
movements in the event of unforeseen disturbances during



execution of the desired task. However, the ability to adapt
speed is important, because speed changes during the PiH
execution are often required in order to raise the success of
the task.

Our approach requires both positions/orientations and
force/torque profiles. Similar approaches have been proposed
before. Pastor et al. [11] introduced a method for real-
time adaptation of learned trajectories depending on mea-
sured sensory data, where a force controller modified the
accelerations of the DMP to comply with the previously
measured force profile. On the other hand, we proposed
methods where arbitrary desired force profiles were observed
through a combination with iterative learning control [6],
[12]. Koropouli et al. [13] have advanced beyond adaptation
and proposed policy generalization approaches employed for
motion-based force control policies. They learn the policy
and policy difference data by locally weighted regression
(LWR) and combine them in a superposition fashion to
estimate the policy at new inputs. In our approach, we use
statistical generalization to generate complete movement and
force-torque trajectory estimates for new queries (inputs).

Statistical generalization uses accumulated data in order
to generate new knowledge, through a statistical process.
Several methods were successfully applied in robotics, for
example, Locally Weighted Regression (LWR) [14], Locally
Weighted Projection Regression (LWPR) [15], and Gaussian
Process Regression (GPR) [16]. Generalization was also
applied to different motion representations, for example for
DMPs in a mixture of motor primitives [17], with Gaussian
mixture models [18], and others. In our previous work we
applied LWR [19] and GPR [20] for the generalization of
DMPs. In contrast to these works, where statistical general-
ization has been performed on a set of position trajectories,
we take into account also the forces and torques that arise in
contact with the environment, when the peg is being inserted.
This is the main contribution of the paper. The combination
of generalization and subsequent adaptation provides us with
a very versatile solution, which can be applied to different
robotic platforms, be it humanoid or industrial robots.

This paper is organized as follows. In the next section
we provide an overview of the proposed approach. Separate
segments of the used method are explained in detail in
Section III. Experimental evaluation follows in Section IV,
with conclusions given in Section V.

II. METHOD OVERVIEW

The method presented in this paper consists of three steps.
In the first step, example motion patterns are recorded and
stored in a library together with the associated external
conditions. In the second step, generalized skill instances are
computed using statistical approaches. The third step deals
with the execution and optimization of the newly generated
skill, which involves contact with the environment. Fig. 1
shows the flow chart of the proposed approach. A number of
example trajectories need to be recorded to perform statistical
generalization. As previously explained, in our approach
not only movement trajectories but also forces and torques

Fig. 1. Flow chart of the proposed method

are taken into account. One of the most suitable methods
for collecting the data is kinesthetic guiding, where the
robot position and orientation trajectories combined with the
resulting forces and torques can be recorded.

Generalization of example movements from the library
is performed with locally weighted regression. LWR is
a memory-oriented, non-parametric method for statistical
approximation [14]. The basic idea is to compute local
models using data from a neighborhood of the desired query
point. Since only a limited number of examples from the
neighborhood of the current query are used to compute
new movements, the method can be applied on-line. In our
system, the output of the generalization algorithm are 1)
parameterized position and orientation trajectories encoded
as Dynamic Movement Primitives (DMPs), and 2) force-
torque profiles encoded as a linear combination of Radial
Basis Functions (RBF).

Newly obtained trajectories (DMPs) in tasks involving
contacts cannot be executed directly by a robot because
even small differences from the optimal trajectory can cause
large forces and torques, which can result in a failed task
execution. Hence, the generalized trajectories have to be
properly adapted. In our work, we use a position controlled
method based on admittance control that adapts the position
and orientation trajectories based on differences between
the generalized forces and torques and the actual forces
and torques that arise during the execution. Upon this, an
offset vector is calculated and added to the positional and
orientational part of the executed trajectory, resulting in
smaller discrepancies between the generalized and actual
forces and torques thus, changing the trajectory during the
execution.

III. DESCRIPTION OF GENERALIZATION METHOD

A. Recording the example movement library

Robot task trajectories can be recorded in several ways. In
this work, we focus on robot data recording with kinesthetic
guiding [21], shown in Fig. 2. Movement trajectories are
recorded in Cartesian coordinates together with end effector
forces and torques. Note that some robots use joint torques
to estimate the end effector forces and torques, therefore the



Fig. 2. Kinesthetic guiding of Kuka LWR-4 anthropomorphic robot arm,
which was used to record the example movement library. The robot motion
is first recorded and then reproduced to record also forces and torques.

measured forces can be corrupted by the human demon-
strator. In such cases, net forces and torques are obtained
with repeating the demonstrated motion, in exactly the same
configuration of the workcell. In the recording phase, the op-
erator physically guides the robot along the desired trajectory,
and thus receives the same feedback from the environment
as the robot. Consequently, the initial trajectories are more
optimal and it is not necessary to refine them afterwards with
means of reinforcement learning [8] or similar methods.

The following data is recorded when demonstrating force-
based tasks: Cartesian space positions and orientations (rep-
resented as quaternions), their first and second derivatives
(linear/angular velocities and accelerations)

Gd = {pi j,qqqi j, ṗppi j,ωωω i j, p̈ppi j,ω̇ωω i j, ti j}Ti, NumEx
j=1, i=1 , (1)

and the corresponding forces and torques

Fd = {FFF i j,MMMi j, ti j}Ti, NumEx
j=1, i=1 , (2)

all recorded at times ti j, j = 0, ...,Ti. Ti is the number of
samples in the i-th recording, i = 1, . . . ,NumEx, is the index
of the recording, and NumEx is the number of recordings
(example task executions in the library). Orientations are
given as unit quaternions qqq = (v,uuu) ∈ R4. Note that all
PiH trajectories used for generalization were segmented
according to the contact between the peg and the base object,
discarding the approach movement from the recordings.

Trajectories and force/torque profiles are recorded at dif-
ferent external conditions (queries). These queries, which in
our case are given as the depth of the hole1 hi, are also saved
in the example library

Hd = {hi}NumEx
i=1 . (3)

Note that the distribution of the example trajectories and
the corresponding queries influences the success of the
generalization. Best results are obtained if the queries are
evenly distributed. Besides, the recorded data must transition
smoothly between queries, see also [20].

1The chosen external condition – the depth of the hole – emphasizes
the advantage of generalizing the forces/torques in addition to the position
trajectories. While the position/orientation trajectories are similar in this
case, and therefore easy to generalize, the force/torques are qualitatively
different – not, for example, just rotated.

B. Generating new movements from example library

We applied locally weighted regression (LWR) [14] for
statistical generalization of the recorded data. LWR is a non-
parametric method for statistical approximation, which uses
raw trajectories and force/torque profiles stored in memory
to determine new movements. This approach was used for
generalization in [19], where LWR was used to generalize
throwing, reaching and drumming movements without con-
sidering contacts with the environment. In contrast to this
previous work, here we consider also the forces and torques
that were recorded and stored in the example library.

In our system, Cartesian positions and orientations rep-
resented by unit quaternions are encoded as DMPs. As
explained in the Appendix, DMPs have the following free
parameters: weights w ∈ RN×7, where N is the number of
basis functions used to approximate the movement, trajectory
duration τ and the final position and orientation of the robot
g ∈ R7. Note that each Cartesian position and each element
of the quaternion is encoded as a separate DMP. After
generalization, the orientational part of the trajectories have
to be normalized to ensure the unit length of the quaternion,
as generalization does not preserve the norm.

Force/torque profiles from the example library are not
encoded by DMPs because in this case the first and the
second derivative are not relevant. Instead we use a linear
combination of radial basis functions in a form

FFF(x) =
∑

N
k=1 vvvF

k Ψk(x)

∑
N
k=1 Ψk(x)

x, (4)

MMM(x) =
∑

N
k=1 vvvM

k Ψk(x)

∑
N
k=1 Ψk(x)

x. (5)

Both position/orientation, encoded as DMPs, and
forces/torques, encoded as RBF (analogous to DMP
weight parameters), share the same phase variable x.
The weights vvv = [v1, . . . ,vM]T need to be computed to
approximate each component of the desired force/torque
profile.

The basic idea of our approach is to apply locally weighted
regression to compute local models, using the data close to
the desired query point

Gp(Gd ,Hd) : h→ [wwwT ,τ,gggT ]T (6)

for positions and orientation trajectories and

G f (Fd ,Hd) : h→ vvv, (7)

for forces and torques. Here Gp and G f are the generalization
functions that map a given query point h into the desired po-
sitions and orientation trajectories and force/torque profiles,
respectively.

The generation of generalization function Gp is the same
as in [19] and the reader is related to this paper for imple-
mentation details. In the following we therefore explain only
the generation of function G f .

The computation of radial basis functions weights v is
based on the training data set (2), (3). Lets first describe how
to approximate the force profile of the i-th demonstration



with a linear combination of RBFs. The following training
data is available for learning:

F(xi, j) =
∑

N
k=1 vk

F Ψk(xi, j)

∑
N
k=1 Ψk(xi, j)

xi, j, j = 0, . . . ,Ti, (8)

where the phase x is defined by the corresponding DMP
representing the position/orientation trajectory, thus it is
given by xi, j = exp(−αxti, j/τ). (8) is a system of linear
equations in vi. Therefore it can be written in matrix form:
fff i =XXX ivvv, with the system matrix XXX i defined as

XXX i =


ψ1(xi,0)xi,0

∑
N
k=1 ψk(xi,0)

· · ·
ψN(xi,0)xi,0

∑
N
k=1 ψk(xi,0)

...
. . .

...
ψ1(xi,Ti)xi,Ti

∑
N
k=1 ψl(xi,Ti)

· · ·
ψN(xi,Ti)xi,Ti

∑
N
k=1 ψk(xi,Ti)

 (9)

and the left and right hand side vectors defined as

fff i =


F(xi,0)

...
F(xi,Ti)

 , vvv =


vF

1
...

vF
N

 . (10)

Thus for the i-th demonstration we can calculate vvv using

vvv =XXX+
i fff i, (11)

where XXX+
i denotes the Moore-Penrose pseudoinverse of XXX i.

By applying LWR we can generalize the training data Gd ,
Hd to a new query point, in our case new depth h, by solving
the following least squares optimization problem

min
vvv

NumEx

∑
i=1
‖XXX ivvv− fff i‖2K(h−hi). (12)

Here K is the kernel function that puts more emphasis on
data associated with queries hi closer to the current query
h. There are many possible choices to select the weighting
function K [14]. We chose the tricube kernel

K(d) =

{
(1−|d|3)3 if |d|< 1
0 otherwise

(13)

because this kernel has finite support. It also has continuous
first and second derivatives, which makes the first two
derivatives of the generalization function G f continuous. By
choosing the tricube kernel we also reduce the computational
complexity of the optimization problem (12) because the
force/torque profiles for which K vanishes do not influence
G f , which reduces the size of the system matrix associated
with the objective function (12). As discussed in [14], the
choice of the weighting kernel is rarely critical for the
performance of locally weighted regression. We obtained
good performance with the tricube kernel in our experiments.

The generalization is performed separately for each degree
of freedom (using the method described in [19]) and each
component of the force/torque profile (using the method
described above). This results in 13 separate generalization
functions (3 for position trajectory, 4 for orientation trajec-
tories and 6 for force/torque profile).

C. Adaptation of generalized trajectories

While executing the generalized trajectories, the resulting
forces and torques can differ from the ones calculated
with the generalization method. If these discrepancies are
significant, this could cause the task execution, in our case
PiH execution, to fail or even damage the objects or the robot.
Therefore, the generalized trajectories have to be adapted
during the execution. As proposed in the work of Abu-Dakka
et al. [6], an error feedback calculated from the actual and
demonstrated forces and torques can be used to modify the
robot movement, thus reducing the discrepancies between the
desired and actual forces and torques. In our work, we apply
this method with the modification of the error feedback.
Instead of using the demonstrated forces and torques, the
error feedback is calculated using the discrepancies between
the generalized and actual forces-torques that arise during
the execution. The error feedback eeep(x) for positions and
eeeq(x) for orientations can thus be calculated as

(0,eeep(x)) = qqq(x)∗ (0,FFFgen(x)−FFFmes)∗ q̄qq(x) (14)
(0,eeeq(x)) = qqq(x)∗ (0,MMMgen(x)−MMMmes)∗ q̄qq(x) (15)

where FFFgen and MMMgen are the generalized force and torque
at phase x, respectively, FFFmes and MMMmes the current mea-
sured force and torque, qqq(x) is the unit quaternion which
specifies the current orientation of the robot’s tool, and ∗
denotes the quaternion product. Using this error feedback,
the trajectories can be modified as proposed in [6]. The
trajectory adaptation algorithm based on admittance control
uses the DMP phase stopping mechanism described in [6],
[22]. If the discrepancies between the measured and the
generalized forces increase, the phase needs to be slowed
down, to prevent the robot from jamming. The method of
Abu-Dakka et al. [6] utilizes the online feedback error to
learn a feedforward term, which is used in execution of the
task at the desired query point. This feedforward term makes
the measured forces and torques closer to the generalized
forces and torques, thereby reducing the need for slowing
down/phase stopping and consequently increasing the speed
of execution.

IV. EXPERIMENTAL EVALUATION

The proposed method was implemented and tested on two
different robot platforms:
• Kuka LWR-4 with 7 DOFs, equipped with an RH-707

two finger gripper. This robot has a torque sensor in
every joint, therefore no external force/torque sensor is
needed. The measured joint torques are transformed to
Cartesian forces and torques using the robots dynamic
model.

• Universal Robot arm – type UR5 – with 6 DOFs,
equipped with ATI (Gamma SI-130-10) force/torque
sensor located at the wrist of the robot and a SCHUNK
WSG50 two finger gripper. This robot is driven by
a high gain non-compliant controller. UR5 robot fea-
tures active gravity compensation and free movement
in teaching mode, thereby enabling kinesthetic guiding.



To evaluate the proposed approach, we performed a task
of inserting both wooden and plastic pegs into holes, where
the depth of the hole is the external condition of the task - the
query for generalization. Note that the type of material and
tolerances significantly affect the execution of the PiH task
and change the resulting forces and torques. Besides, pegs
and holes of round and square shape were used. Tolerance
between the wooden peg (Fig. 11) and hole was 1.2 mm and
the tolerance between both square and round plastic pegs and
respective holes was 0.3 mm (Fig. 2). Example movements
and force/torque profiles were obtained using kinesthetic
guidance on both robots, as described in Section III-A. The
total depth varied from 4 cm to 16 cm in 2 cm increments.
With kinesthetic guidance we obtained 7 example trajec-
tories, at depths of 16+ [0,−2,−4,−6,−8,−10,−12] cm.
Our method was evaluated for 6 previously unexplored
movements at depths 16 + [−1,−3,−5,−7,−9,−11] cm.
New position trajectories and force/torque profiles were
generated for these depths. The resulting forces during the
execution can be different from the generalized forces and
torques, therefore the trajectories were further refined using
the approach from [6].

A. Experiments performed with Kuka LWR-4

The first set of experiments was conducted with Kuka
LWR-4 robot arm inserting the plastic (ABS) round peg into
the round hole. Robot control and the proposed method were
implemented in Matlab, which communicated with the robot
controller using Fast Research Interface (FRI) [23]. Although
Kuka LWR robots have the capability of compliant control,
in this experiments this capability was not exploited and it
was set to maximal Cartesian stiffness in order to provide a
better comparison with the results gathered on the UR5 robot
that is admittance controlled. Figures 3-6 show the example
and the generalized trajectories and force/torque profiles at
the query point h = 13 cm.

Fig. 7 shows the generalized forces (blue dotted line) and
the actually measured forces (green solid line) arising during
the execution of the generalized trajectory. In Fig. 8 the phase
evolution during the execution of the generalized trajectory
is shown. Whenever there is a significant difference between
the measured and the generalized forces and torques, the
phase is slowed down (using the phase stopping technique
explained in [6]) according to the force/torque error, which
is partially compensated by the force feedback control. Note
that the phase stopping has occurred towards the end of
execution, which resulted in a prolonged execution time of
the trajectory.

In order to demonstrate the benefit of the proposed
generalization of the force/torque profiles, we performed
experiments, where the proposed technique was used only
for generalization of position trajectories. Instead, the nearest
force/torque profile in the example library with respect to the
given query point, e. g., depth h = 13 cm, was used. Note
that the selected force/torque profile has to be mapped to the
time interval of the generalized trajectory. The corresponding
results are outlined in Figs. 7 and 8. Comparing the force
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Fig. 3. Graphs show the Cartesian x, y, z coordinates of the PiH movement
from the example movement library. Generalized position trajectories for the
depth h = 13 cm are shown in red.
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Fig. 4. Graphs show the quaternion orientations q = (v,u) of the PiH
movement saved in the example library. Generalized orientation trajectories
for the depth h = 13 cm are presented red.

evolution of the two executions in Fig. 7, we can see that the
differences between the generalized forces (blue dotted line)
and nearest neighbour forces (solid red line) are far greater
than the differences between the measured forces, obtained
with the execution of the generalized force/torque trajectory
(green solid line) and the generalized forces. A significant
difference can also be noted in phase evolution, which is
shown in Fig. 8. The phase stopping was much more frequent
in the execution with nearest neighbour forces compared, to
the execution of measured force/torque trajectory throughout
the entire evolution of the phase. This means that there was a
major difference between the actual forces and the example
forces, which resulted in a longer execution time. This
experiment shows that generalization of force/torque profiles
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Fig. 5. Graphs show the Cartesian forces arising during the execution of
the PiH task saved in the example library. Generalized forces for the depth
h = 13 cm are shown in red.
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Fig. 6. Graphs illustrate the measured Cartesian torques of the PiH task
from the example library. Generalized torques for the depth h = 13 cm are
shown in red.

with LWR leads to a significantly faster task execution than
the simple nearest neighbour method.

The same experimental setup was used to test the proposed
approach on a square shaped peg and hole. First a set of
example trajectories was recorded. Then, the same algorithm
was used to generalize new movement trajectories with
associated force/torque profiles, and executed. Comparison
of nearest neighbour and generalized trajectory executions
at depth h = 13 cm can be seen in Fig. 9 and Fig. 10.
The comparison of graphs in Fig. 8 and Fig. 10 shows
similar results, proving that the generalized forces require
less adaptation for the PiH task execution. It can also be
seen that the adaptation of the generalized trajectories with
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Fig. 8. Phase evolution during the execution of the generalized trajectory
for the PiH task, using the measured force/torque profile and the nearest
neighbour force/torque profile. The solid blue line corresponds to an ideal
phase without DMP phase stopping, while the solid red line corresponds to
the actual phase evolution during the nearest neighbour method execution.
Green line represents the execution of the measured generalized force/torque
trajectory.

the square peg insertion was more frequent comparing to the
round peg. This is due to the shape of the object, because
small misalignments and tight tolerances result in high forces
exerted on the robot.

B. Experimental evaluation with UR5 robot

The proposed method was also tested on the Little Helper
4 platform at Aalborg University. The Universal Robot UR5
arm (shown in Fig. 11) is the main manipulator of the
robotic platform. As before the algorithm was implemented
in Matlab. ROS industrial driver was used as means of
communication between the UR5 robot controller and Matlab
with a frequency rate of 50 Hz.

The example trajectories were demonstrated using kines-
thetic guidance. Unlike Kuka LWR-4, which is impedance
controlled, UR5 is admittance controlled. Compared to kines-
thetic guidance with Kuka LWR-4, kinesthetic guidance
with UR5 is less smooth due to the limitations of sensors
and control. Therefore, the wooden peg and a hole with a
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Fig. 10. Phase evolution with phase stoping during the generalized
trajectory execution (ideal phase blue dashed line), using the measured
force/torque profile (green) and the nearest neighbour force/torques (red).

tolerance of 1.2 mm were used. Figures 12 and 13 show the
discrepancies between the generalized and measured forces
and phase evolution of the executed generalized trajectory.
The results are comparable with the results obtained with
Kuka LWR-4, but the insertion is generally not as smooth
and robust due to the admittance control performed at a low
frequency rate.

V. CONCLUSIONS

We developed an approach for force-based statistical learn-
ing of contact skills from a set of example movements. In the
proposed approach, the recorded forces and torques are taken
into account besides position and orientation trajectories. The
developed method generates new trajectories as well as the
corresponding force/torque profiles from the demonstrated
data. Position and orientation trajectories are encoded with
DMPs, whereas force/torque profiles are encoded with RBFs.
In our work we used LWR as a method for generating new
trajectories according to a given query point.

In stiff environments generalized trajectories might still
require additional adaptation in order to generate the desired
force/torque profile. By applying a suitable trajectory adap-

Fig. 11. Generalized trajectory execution on Universal Robot UR5.
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Fig. 12. Forces measured during the peg insertion with UR5. The reference
generalized forces are represented with the blue dashed line and the actual
measured forces with the red solid line.

tation method, the generalized trajectory can be modified so
that the generalized forces and torques match the ones that
arise during the task execution. We tested our method on
two different robotic platforms: the LWR-4 humanoid arm,
which is impedance controlled, and the UR-5 industrial robot
arm, which is admittance controlled. Despite of different
controllers the proposed method was successfully applied on
both platforms. Experimental results show the robustness and
fast adaptation capability of the proposed generalization and
adaptation algorithm. In our future work we will investigate
other relevant task external conditions in order to enhance
the performance and speed up the execution.

APPENDIX

We use DMPs to encode Cartesian space position and
orientation trajectories. A DMP is specified by a set of
nonlinear differential equations with well-defined attractor
dynamics [9]. For a single degree of freedom trajectory y,
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Fig. 13. Phase evolution of the peg insertion with UR5. Blue dashed line
represents the phase of the generalized trajectory where no phase stopping
is applied, while the red solid line shows the actual phase evolution of the
executed trajectory, where phase stopping is applied to prevent jamming
and enable adaptation. The nearest neighbor forces execution is not shown
because such execution was not successful due to the required amount of
adaptation, which was not feasible at the given frequency rate. Too high
forces would appear and the robot would stop for safety reasons.

the DMP is defined as follows:

τ ż = αz(βz(g− y)− z)+ f (x), (16)
τ ẏ = z, (17)
τ ẋ = −αxx, (18)

where x is the phase variable, z is the auxiliary variable and
g is the desired goal of the movement. Parameters αz, βz,
αx and τ define the behaviour of this second order system.
If the parameters are selected as τ > 0, αz = 4βz > 0 and
αx > 0, then the dynamic system has a unique point attractor
at y = g, z = 0. Given the initial condition x(0) = 1, the Eq.
(18) is solved analytically by x(t) = exp(−αxt/τ). However,
to implement different modulations of a DMP such as phase
stopping [22], it is better to keep Eq. (18) as differential
equation.

The forcing term f (x) is defined as a linear combination
of radial basis functions, which enable the robot to follow
any smooth point-to-point trajectory from the beginning of
the movement y0 to the end configuration g:

f (x) =
∑

N
i=1 wiΨi(x)

∑
N
i=1 Ψi(x)

x, (19)

Ψi(x) = exp
(
−hi (x− ci)

2
)
. (20)

Here ci are the centers of the radial basis functions distributed
along the trajectory and hi > 0. For robots with more than one
degree of freedom, each degree is represented by Eq. (16)
– (17) with different wi, and g, but with a common phase
variable x and time constant τ as specified in Eq. (18).

To approximate any smooth trajectory with a DMP, we
need to estimate the weights wi, time constant τ , and the goal
configuration g. τ is usually set to the duration of the move-
ment, g to the final configuration on the trajectory, while
wi are estimated from the training data (sampled positions,
velocities and accelerations) using regression techniques. See
[9] for more details.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009.

[2] R. Dillmann, “Teaching and learning of robot tasks via observation
of human performance,” Robotics and Autonomous Systems, vol. 47,
no. 2, pp. 109–116, 2004.

[3] J. J. Steil, C. Emmerich, A. Swadzba, R. Grünberg, A. Nordmann, and
S. Wrede, “Kinesthetic teaching using assisted gravity compensation
for model-free trajectory generation in confined spaces,” in Gearing
Up and Accelerating Cross-fertilization between Academic and Indus-
trial Robotics Research in Europe:, pp. 107–127, Springer, 2014.

[4] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of
positional and force skills demonstrated via kinesthetic teaching and
haptic input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603, 2011.

[5] F. Steinmetz, A. Montebelli, and V. Kyrki, “Simultaneous kinesthetic
teaching of positional and force requirements for sequential in-contact
tasks,” in IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids), pp. 202–209, 2015.

[6] F. J. Abu-Dakka, B. Nemec, J. A. Jørgensen, T. R. Savarimuthu,
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