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Abstract: Small and medium size enterprises (SMEs) often have small batch production. It leads to decreasing product
lifetimes and also to more frequent product launches. In order to assist such production, a highly reconfigurable
robot workcell is being developed. In this work, a visual inspection system designed for the robot workcell is
presented and discussed in the context of the automotive light assembly example. The proposed framework
is implemented using ROS and OpenCV libraries. We describe the hardware and software components of the
framework and explain the system’s benefits when compared to other commercial packages.

1 INTRODUCTION

Nowadays robots have become essential in mul-
tiple industrial tasks. The robotic solutions are usu-
ally applied for complex repetitive tasks and high unit
volume (Gaspar et al., 2017). However, in small
or medium-sized enterprises (SMEs) a few-of-a-kind
production scenarios (Krüger et al., 2014) are more
typical. Since SMEs provide more than 40% of the
value added by the manufacturing industry in the Eu-
ropean Union (European commission, 2013), it is vi-
tal to allow them introduce efficient and easily recon-
figurable robotic solutions to ease and speed up the
product manufacturing.

To facilitate the production in SMEs, a recon-
figurable workcell is being developed and intro-
duced (Gaspar et al., 2017) as a modular system,
where hardware and software components allow for
fast and easy reconfiguration.

In this paper, we present a visual monitoring sys-
tem, which is designed to detect errors during the as-
sembly process within the reconfigurable work cell.
We describe the hardware and software components
of the system and evaluate its applicability on the ex-
ample use case, namely, to the automotive light as-
sembly.

The paper is organized as follows. In Section 2,

the relevant information about the work cell devel-
opment as well as the available monitoring systems
is given. Section 3 presents the motivation for our
developments. In Section 4, the use case details are
presented. In Section 5, the monitoring problem is
described and the measurement points are identified.
In Section 6, the proposed hardware and software so-
lutions are presented. The results are described and
analysed in Section 7. Section 8 concludes the paper.

2 RELATED WORK

Fulea et al. (Fulea et al., 2015) surveyed the lit-
erature on the topic of reconfigurability, focusing
on industrial robotic workcells (as parts of recon-
figurable manufacturing systems), aiming to identify
the main approaches on reconfigurability and its rel-
evant implementations in the robotics (and related
fields). Setchi and Lagos (Setchi and Lagos, 2004)
provided a review of reconfigurability and reconfig-
urable manufacturing systems. Bi et al. (Bi et al.,
2008) presented a survey of Reconfigurable Manu-
facturing Systems (RMS). It included general require-
ments of next generation manufacturing systems and
discussed the strategies to meet these requirements.

Duro et al. focused on the applicability of the



Multicomponent Robotic Systems and Hybrid Intel-
ligent Systems for industrial tasks (Duro et al., 2010).

Gaspar et al. (Gaspar et al., 2017) presented
a novel automatically reconfigurable robot workcell
that addressed the issues of flexible manufacturing.
The proposed workcell is reconfigurable in terms of
hardware and software. The hardware elements of
the workcell, both those selected off-the-shelf and
those developed specifically for the system, allow for
fast cell setup and reconfiguration, while the software
aims to provide a modular, robot-independent, Robot
Operating System (ROS) based programming envi-
ronment (Quigley et al., 2009). One of the innova-
tive hardware elements for this cell type is a flexible
fixture based on a Gough-Stewart platform called the
hexapod presented by Bem et al. (Bem et al., 2017).

An industrial monitoring problem is highly rele-
vant and has been studied in several research projects.
For instance, the SCOVIS project investigates the au-
tomatic work flow monitoring in a car assembly envi-
ronment in order to improve safety and process qual-
ity (Kosmopoulos et al., 2012; Mörzinger et al., 2010;
Voulodimos et al., 2011).

The monitoring of assembly processes is usu-
ally addressed by building customized solutions us-
ing commercial framework packages as Halcon (Eck-
stein and Steger, 1999) or Cognex (Scola et al.,
2001) frameworks. These frameworks are power-
ful and contain multiple efficient algorithms for pat-
tern recognition and image analysis. Another pos-
sible option is to use other commercial frameworks
(Matlab (Hanselman and Littlefield, 2005)) or free li-
braries such as OpenCV (Bradski, 2000).

3 MOTIVATION

Since the general project architecture suggests to
use the ROS framework (Gaspar et al., 2017), we look
for a software package or library that can be inte-
grated with ROS interface in a straightforward way.

To our knowledge, there is no straightforward way
to connect the ROS (Quigley et al., 2009) interface
with such frameworks as Halcon or Cognex software.
Moreover, the use of a commercial software would
increase the overall cost of the robot work cell. This
leverages the use of the free and open source systems
as ROS (Quigley et al., 2009) in combination with the
OpenCV library (Bradski, 2000).

The processing using the well known software as
Halcon or Cognex can only be organized using the
procedure schematically shown in Figure 1. The im-
age must be obtained from the camera using the ROS-
based framework and saved on a hard drive. There-

after, the image can be read and processed by a soft-
ware package. The ROS node keeps listening to the
specified folder for the results. As soon as the image
processing is finished and saved, the ROS node reads
the results and sends a notification to the robot.

This solution is rather time-consuming and inef-
ficient. Hence, we have developed our own system,
which is completely integrated into the ROS frame-
work. Our system is based on OpenCV library, i. e.,
the main algorithm implementations are tested and
optimized. Several algorithms are combined into pro-
cessing pipelines, suitable for the example use case.
The main idea of our software package is to use fast
and efficient algorithms that do not require any prior
training due to the fact that for each task in each use
case the collection of a big amount of data seems in-
feasible.

Therefore, we propose a novel system, based on
OpenCV and ROS libraries, which is designed for
monitoring tasks in a robot workcell.

4 AN EXAMPLE USE CASE:
AUTOMOTIVE LIGHT
ASSEMBLY

Automotive lights (headlamps) are made up of
typical rigid structural elements such as housing, ac-
tuators, bulb holders, adjustable screws, heat shields,
wires and other components (Gaspar et al., 2017).

In Figure 2, two housings of car lights assembled
by ELVEZ company are shown.

There are several details that have been used for
robotic assembly. The components are listed below
and shown in Figures 2 and 3:

• Housing X07 or X82;

• LWR drive;

• Heat shields (left and right);

• Buld holder;

• Adjusting screw.

Such components as harness connection (cf. Fig-
ure 4) have been excluded as not suitable for the
robotic assembly.

5 QUALITY CONTROL TASKS

In general, visual inspection is to identify whether
a particular attribute is present, properly located on a
predetermined area, and not deviates from a given set
of specifications (Liu et al., 2015).
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Figure 1: The image processing pipeline, when a software package is not straightforwardly combined with a ROS-based
system.

Figure 2: Two models of left and right automotive light housings produced by Elvez. Left: Housing X07; Right: Housing
X82.

Figure 3: Components for the assembly process. 1 and 2 are
the heat shields. 3 is the LWR Drive. 4 is the adjustment
screw. 5 is the light bulb holder.

Figure 4: An example of a harness connection. It was ex-
cluded from the automated assembly process.

There are two types of quality control tasks: a bi-
nary decision and a measurement. In the binary task,
the algorithm needs to make a decision, for instance,
if a detail is damaged or incorrectly placed. The mea-
surement task requires to measure a distance between
two details, a height of a screw, an angle of rotation
of the detail.

Whereas the first task can be implemented using a
camera, which has been only intrinsically calibrated,
the second task requires the extrinsic camera calibra-
tion (Hartley and Zisserman, 2003) to obtain the mea-
surement results in physical units, for instance, in mm.
In this work, we describe and demonstrate the solu-



tions of the first type.
Here, we consider the following quality control

tasks:

1. Is a certain part of the housing damaged?

2. Is the screw properly assembled and no damages
occurred?

3. Is the LWR drive properly assembled and no dam-
ages occurred?

4. Is the light bulb holder properly assembled and no
damages occurred?

6 METHODS

For our framework, we have chosen hardware and
software components that are described below.

6.1 HARDWARE AND USER
PRE-SETUP

The monitoring of the execution and detection of er-
rors is performed in the workcell using a 2D color
camera (Basler acA4600-7gc), which is mounted to-
gether with a light ring to the robot using a pneumatic
tool changer system as seen in Figure 5. This system
allows the robot to release a gripper and pick up the
camera. This high resolution industrial camera pro-
duces 14MP images and has been selected to be able
to catch even minor detail damages and assembly in-
accuracies. The camera has a rolling shutter and a rel-
atively low frame rate of 7 frames per second, which
makes the camera suitable only for situations where
the observed object is static relative to the camera.

As part of the reconfigurable workcell that our
proposed system is part of, the user has several ways
of planning the assembly sequence. It is possible to
use kinesthetic guidance in order to teach robotic se-
quences or use a simulation environment to design a
sequence. In both cases the user must define when
and where the visual inspections will be performed.

In this paper, we are proposing a solution for bi-
nary decisions, in which case camera plane alignment
is not so critical as in measurement inspections. That
means a user can use kinesthetic guidance or simu-
lation in order to select the camera pose for an ar-
bitrary inspection. There are several constraints that
must be obliged in order to come to a viable assem-
bly and inspection solution, e. g., the camera field of
view (lens), the robot configuration to reach the re-
quired camera pose (collision, workspace), and the
cycle time.

Figure 5: The industrial camera with a light ring mounted
on the UR-10 robot with the pneumatic tool changer system.
Left: a general view. Right: a close-up view.

6.2 SOFTWARE SOLUTION

We have developed a framework, based on
OpenCV (Bradski, 2000) using ROS inter-
face (Quigley et al., 2009), C++, and Qt (Sum-
merfield, 2010). The framework consists of several
ROS modules, where the central is the Monitoring
one.

The image data stream is published through the
ROS module for the Basler camera. As soon as the
request for inspection arrives to the Monitoring ROS
module, it acquires the data from the camera, executes
the corresponding processing, and returns the status
of the operation (a boolean value, indicating, if the
detail is damaged or not). Additionally, a graphical
user interface is developed to demonstrate the moni-
toring routine.

6.2.1 The processing pipeline

First, ideal or template images are acquired (cf.
Figure 6) and the corresponding regions of interest
(ROIs) are predefined by the user. After the templates
are defined, the actual processing of new image data
can be executed.

Second, the template ROI is detected in the newly
acquired image. The search of the template starts
within a neighborhood of the ROI location in the ideal
image. The search is based on the assumption that the
ideal template and the actual image data are always
acquired under very similar conditions, namely, the
same controlled lighting and the pose. The template
image is overlaid with the corresponding patches of
the original image and in each point in a certain neigh-
borhood of the template location a normalized cor-
relation coefficient is computed. The location of the
global maximum is considered as the template loca-
tion (cf. Figure 7). Finally, the detected ROI of the
same size as the template image is extracted from the
acquired image and passed for further processing.



Figure 6: The process of template selection.

Figure 7: The process of template detection is schematically
shown. The template image (left) is sought in the acquired
image (right), and the region that is the most similar to the
template image is marked red.

Third, the subimage preprocessing is executed.
Under preprocessing we understand illumination cor-
rection and denoising (Masters et al., 2009). It is
crucial to apply these techniques not on a full ac-
quired image, but on the extracted subimage to re-
duce the computational cost and the overall execu-
tion time. The subimage is converted to the L*a*b
color space (Reinhard et al., 2001), which is designed
to approximate human vision. The luminance chan-
nel (L) is extracted and the adaptive histogram equal-
ization (Reza, 2004) is applied to it. Thereafter, the
image is smoothed with median filter to preserve the
edges.

Fourth, the use case-specific checks are executed.
Usually, they include a segmentation step to extract
the contours of the detail of interest, for example, us-
ing color global or local, automatic or manual thresh-
olding. For the automatic thresholding, the Otsu
thresholding (Zhang and Hu, 2008) is applied. There-
after, connected components (Masters et al., 2009) are
checked, and the component of interest is found and
analyzed.

6.2.2 Framework modes

The framework has three following modes:

• Template selection (online or offline);

• Offline processing pipeline testing;

• Online monitoring.

After the template selection, the user can test the
developed detection pipelines and check different pa-
rameter settings on an image, acquired from the cam-
era directly or saved on a hard drive.

In the current version of our framework, the pro-
cessing pipelines are pre-programmed. The next ver-
sion the user will be able to generate and save the pro-
cessing pipelines.

6.2.3 Use case-specific algorithms

Here, we describe the algorithms that have been de-
veloped for the automotive light assembly use-case.

Damage on the housing part An example is shown
in Figure 7. In this task, the shape of the detail as well
as its intensity are analysed.

The shape of the detail top is assessed using the
Hough transform algorithm for circle detection (Mas-
ters et al., 2009).

The top circles are detected both in the template
and the ROI images. If the distance d between the
circle centers c1 and c2 and differences between the
radii are greater than a user defined threshold T , the
detail is considered to be damaged:{

d(c1,c2)>= T Damaged
d(c1,c2)< T OK

(1)

For the intensity analysis, the template and the ROI
images (It and IROI , respectively) are converted to the
HSV color space (Masters et al., 2009), and the abso-
lute differences between the intensity values are com-
puted: |HSV (It)−HSV (IROI)|. The total number of
pixels, where the difference value is greater than a
user defined threshold, is evaluated.

In Figure 8, an example of the ROI extracted in
Figure 7 is shown. Since the detail is damaged, the
Hough transform fails to detect the circle in the ROI,
and the expected circle location is marked red. The
parts, where the differences with the template image
are significant are marked white. As it can be ob-
served, most of the differences are located in the dam-
aged region.



Figure 8: Left: the acquired image of the damaged detail.
Right: The processing results are overlaid with the acquired
image.

Figure 9: The base of the screw is a template, since this part
does not change from image to image.

Detection of the screw height Basically, it is re-
quired here to detect if the screw height lies in a user-
defined range. In this case, a screw base is selected as
a suitable template (cf. Figure 4).

When the template is detected, the coordinates of
its top left corner [x1,y1] and the bottom right cor-
ner [x1 +w,y1 +h] are given, where w, h denote the
width and height, respectively. To extract a region,
which contains the screw, the following coordinates
are taken: [x1,0], [x1 +w,y1]. Thereafter, the prepro-
cessing procedure described above is utilized. Finally,
Otsu thresholding (Zhang and Hu, 2008) is applied to
the image.

From the thresholding result the two biggest con-
nected components are extracted and their total height
is measured (cf. Figure 10). If the height H of the
screw does not lie in a predefined range, the case is

Figure 10: The screw is detected using connected compo-
nent analysis.

rejected: {
Thmin ≤ H ≤ Thmax OK
Otherwise Reject

(2)

Detection of the detail position Here, both prob-
lems of the LWR drive and the bulb holder position-
ing are solved with a similar processing pipeline. Ba-
sically, the template is detected and then the extracted
region of interest (ROI) is compared to the template
image. If the differences between the images are
higher than a certain threshold the case is rejected. In

Figure 11: The detection result is positive.

Figures 11 and 12, screenshots from our framework,
acquired in the Testing mode are shown. The LWR



drive is properly placed, whereas the image with the
bulb holder is rejected.

Figure 12: The assembly was not successful.

7 EVALUATION AND
DISCUSSION

We analyze the presented hardware and software
components as well as discuss the advantages and
limitations of the system.

7.1 Hardware components

Today the market of industrial imaging offers multi-
ple 2D and 3D cameras. For instance, such companies
as ”The Imaging Source“ 1 or Basler 2 present indus-
trial cameras, which can be successfully applied for
the monitoring task. Apart from that, these manufac-
turers support a multi-platform application program-
ming interface (API).

Moreover, there is a specialized ROS module for
Basler cameras, which is naturally built in the gen-
eral software architecture of the reconfigurable work
cell (Gaspar et al., 2017).

We have selected a color high resolution (14 MP)
Basler camera, which allows for up to 7 frames per
second. The resolution is 4608px× 3288px. This
camera can only be used for acquisition of still im-
ages, i. e. the robot moves to a certain position, stops,

1https://www.theimagingsource.de
2https://www.baslerweb.com

and the image is taken. For such tasks as video track-
ing, this camera is not suitable.

For the selection of the appropriate lens, several
parameters have to be taken into account. The main
ones are the object size and the working distance. The
sensor size and the lens mount are defined by the cam-
era. Since the size of the imaged objects can be rather
small, e. g. 10× 20 mm2, and considering the sensor
size, we have selected a f 25 mm lens with a working
distance 200 mm.

7.2 Software components and
algorithms

We observed that measurement problems are very dif-
ferent even for the same use case. Hence, only lim-
ited generalization with respect to processing algo-
rithms is possible. Namely, one is not able with the
same algorithm to measure the height of a metal screw
and detect, if some other plastic detail is intact. The
general evaluation pipeline consists of the following
steps:

1. Template detection

2. ROI selection

3. ROI pre-processing (denoising and illumination
correction)

4. Segmentation and object extraction

5. Object evaluation (distance or angle measure-
ment, binary decision)

The first three steps are rather general, and we use
them for all measurement problems. Of course, prior
to measurements, the user has to set up the templates
for each problem.

For the first step, the template matching al-
gorithm provided by OpenCV is applied. We
observed that only normed metrics (for instance,
CV_TM_CCORR_NORMED) work reliably for our prob-
lems. This straightword template matching is ap-
plicable, when the assumption about the controlled
lighting conditions holds. In a more general set up,
this algorithm can be replaced with a more sophisti-
cate object detection using descriptors, for example,
SURF (Zhang and Hu, 2008).

The latter two steps are task-dependent. For
segmentation and object extraction we usually ap-
ply some prior knowledge about the object appear-
ance, e. g., color, shape, and location on the image.
Here, such algorithms as color clustering or thresh-
olding, and shape analysis (Hough transformation,
Harris corner detection, Connected component anal-
ysis) are applicable.



For each measurement problem, we collected test
images, acquired in a test environment as well as the
real images, obtained during the assembly procedure.
The parameters were pre-selected and optimized for
the implemented use case.

A new use case, i. e. with new measurement tasks,
the algorithmic pipelines and their correspondent pa-
rameters would have to be again selected and opti-
mized. However, we assume that a set of image pro-
cessing tools provided by the OpenCV library, such as
pattern matching, denoising, segmentation, and fea-
ture extraction algorithms would be fully sufficient for
a monitoring task.

Although the presented framework for visual in-
spection is efficient and completely integrated with
the whole robotic work cell, it has certain limitations.
First, the hardware choice is suitable for inspection of
static images, but it is not suitable for video tracking.
Second, the whole software system is tied to a spe-
cific ROS version, which is not downwards compat-
ible. Third, the generation new processing pipelines
would require from the user some knowledge on im-
age analysis and robotics. Fourth, new templates will
have to be generated and the parameters will have to
be re-optimized, if the robot poses or lighting condi-
tions change, which can be a rather time-consuming
task.

8 CONCLUSIONS AND FUTURE
WORK

The computer vision framework, which is used as
a monitoring module in a highly reconfigurable robot
workcell has been presented here. The hardware as
well as software components were described and dis-
cussed. The automotive assembly use case example
was used as an application example.

As future work, we will extend the software com-
ponents to allow the user to generate processing
pipelines as well as test the framework on further use
cases.
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Ude, A., and Gosar, Ž. (2017). Rapid hardware and
software reconfiguration in a robotic workcell. In
Advanced Robotics (ICAR), 2017 18th International
Conference on, pages 229–236. IEEE.

Hanselman, D. C. and Littlefield, B. (2005). Mastering mat-
lab 7. Pearson/Prentice Hall.

Hartley, R. and Zisserman, A. (2003). Multiple view geom-
etry in computer vision. Cambridge university press.

Kosmopoulos, D. I., Doulamis, N. D., and Voulodimos,
A. S. (2012). Bayesian filter based behavior recog-
nition in workflows allowing for user feedback. Com-
puter Vision and Image Understanding, 116(3):422–
434.
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