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Abstract

This paper reports the discovery of a fast, yet highly discriminative local 3D descrip-
tor for point cloud data. Local descriptors are popular and highly effective for various
3D tasks such as registration, pose estimation and object recognition. Good solutions for
these tasks critically depend on the ability to make correct associations between two or
more models, or the local features on these, even under the influence of disturbances such
as noise, clutter and occlusions. Our descriptor formulation is inspired by the geometric
relations employed by the well-known Point Pair Feature, used originally on a global
scale for classification and later on a semi-global scale for recognition. We have identi-
fied the most discriminative subset of relations for use in a local descriptor, resulting in a
condensed representation of the local variation around a surface point.

We compare against seven competing mesh and point cloud descriptors on eight dif-
ferent matching benchmarks with a well-defined evaluation protocol. In all cases, our de-
scriptor outperforms earlier works, providing relative gains in accuracy above 100 % for
two of the four real datasets considered. Finally, we subject all descriptors to RANSAC
based pose estimation and object recognition evaluation on four real datasets. In all four
cases, our descriptor matches or surpasses state of the art performances.

1 Introduction
3D processing tasks such as object recognition, detection and localization often require ro-
bust methods in order to cope with real sensor data, where imperfect reconstructions are
present. These considerations are relevant for e.g. robotic tasks, where objects need to be
grasped and manipulated. This work deals with the problem of robustly describing known,
rigid objects using 3D sensor data. This 3D sensor data can come from for example laser
scanning, time of flight measurements, stereo cameras or RGB-D cameras.1 In most cases,
an object model is given either as CAD data or from an object scanning process. The ob-
jective is to instantiate this model into a scene view containing partial data from the object
as well as a large amount of spurious data from other elements of the scene. Additionally,
the object data in the scene is both inaccurate due to sensor noise and discretization and
sometimes inadequate due to missing reconstructions, i.e. holes, occlusion.

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1In our work we are interested in the pure geometric information, thus we would not benefit from the additional
appearance information RGB-D delivers, but our descriptor can be used to describe data from all of these sensor
sources. We have tested our descriptor on data from synthetic, laser scanner, RGB-D and stereo sources.
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Local 3D descriptors provide a means to get get putative, point-wise correspondences
between the object model and the scene data. These can be fed to a robust estimator such
as RANSAC [8] to get an estimate of the object pose, thus providing an instance recogni-
tion in the scene. Other relevant applications using local 3D descriptor matches are object
reconstruction, scene registration and face recognition. Clearly, the performance of all these
approaches greatly depends on the number of inlier correspondences produced by the match-
ing stage, which amounts to a high-dimensional nearest neighbor search between two sets of
descriptors.

In this work, we contribute with a new local point cloud descriptor for obtaining corre-
spondences between 3D models of objects and scenes. We use low-level relations between
oriented point pairs within a local spherical support, which makes our descriptor among the
fastest available. We provide experiments, following the protocol of several prior works
for benchmarking local 3D descriptors, on eight different matching tasks, both from syn-
thetic and real datasets. Finally, we include a recognition experiment on the real datasets.
Our experiments indicate substantial improvements over existing descriptors for the task
of local 3D descriptor matching. A C++ implementation of our descriptor is available at
gitlab.com/caro-sdu/covis.

In the following section, we outline the most relevant and recent related work on local
3D description. In Sect. 3 we describe the method for constructing our descriptor. All
experimental results are given in Sect. 4, and in Sect. 5 we conclude on our findings.

2 Related work
Perhaps the earliest work on 3D object recognition based on local 3D features is due to
Stein and Medioni [22], who defined a local representation of differential surface properties.
Chua and Jarvis [5] instead used point information to derive a point signature for matching
range images. Johnson and Hebert introduced the well-known Spin Image descriptor [13],
also for use in object recognition from range data. Some of the following works on 3D
matching and recognition showed improvements over this descriptor, e.g. for car detection
[9], object recognition [16] and face recognition [17]. In the years that followed, an array
of new 3D descriptors for both mesh and point cloud data were introduced. In [1], local
depth maps were used for computing scale-invariant local descriptors. Local surface patches
with high variations were described by 2D histograms in [4]. In [20] a fast and relatively
low-dimensional descriptor was built using three dihedral angles. Variable-sized descriptors
were used in an optimization platform in [23]. In [27] mesh data were used for keypoint
detection and local description, utilizing different surface characteristics. In [24] a robust
local reference frame was used to improve an existing descriptor, which immediately led to
the introduction of a new and further improved point cloud based descriptor better utilizing
the orientation information in the reference frame [21]. Similar principles for computing
reference frames were adopted to mesh data in [10]. More recently, lower-dimensional point
cloud based descriptors have shown competitive performances for some datasets [3, 14].

The descriptor presented in this work is constructed using every point pair within a local
support region, resulting in a 2D histogram of distance and angle relations. Other works such
as [4, 10, 13] also use 2D histograms as building blocks for descriptors, but all in different
ways. We utilize some of the relations initially employed in [26] for object classification in
3D data. Similar relations were used in a notable work [7] for object recognition and pose es-
timation in cluttered scenes, leading to several very recent extensions [2, 6, 12]. These works
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used the concept of a Point Pair Feature (PPF) as a primitive but fast method for obtaining
candidate poses between two models. None of these works, however, has considered using
the PPF relations for local surface description as we do, since both [26], [7] and derivatives
use them globally, either in a single, global descriptor, or as a low-dimensional pair feature.

3 Method
In this section we go through the steps required to obtain a description of an object or a scene
model using a set of local descriptors. The first step is to prepare the model data to ensure
we have a coarse and a fine point cloud at a fixed resolution (Sect. 3.1). In Sect. 3.2 we then
describe the smoothing of surface normals used. The next step, the actual creation of the
2D histogram descriptor is explained in Sect. 3.3 while the last subsection (Sect. 3.4) details
how to match feature descriptors.

3.1 Data preparation
All input models for the objects and the scenes are given as 3D models such as polygon
meshes or point clouds. These can either be created artificially using CAD, or they can come
from laser scanners or RGB-D sensors. Before using the models we preprocess them in the
following three steps: (1) First we downsample the models to a fixed resolution. Depending
on the fidelity of the original data, we downsample models to a point spacing between 0.5 mm
and 3 mm. We term this fine model the surface modelMs. (2) For this model we estimate
the local surface normal at each point using either the incident mesh faces (when available)
or by a least squares plane fit using all points in a small neighborhood [19]. (3) Next we need
to compute a set of local features to describe the model. Similar to previous benchmarks on
local 3D features [3, 11, 21], we further downsample the surface model to a resolution that
results in approximately 1000 remaining points on the model. We denote this coarse model
the feature modelM f . This model contains the feature points for which we compute local
descriptors, but using the underlying points inMs when describing each feature point.

All downsamplings are performed uniformly to ensure that the whole surface is covered
by each descriptor. Although keypoint detectors can be used for finding more distinctive
regions [25], these detectors would make our evaluations less neutral, since different key-
points can boost the performance of the descriptors to varying degrees on different datasets.
The relative performances between the different descriptors are, however, to a large degree
preserved when using both uniform sampling and keypoint detectors. We therefore opted for
uniform samples, as it is done in earlier works [3],

3.2 Reference axis estimation
Similar to most other local 3D features, our feature formulation uses the surface normals in
a local neighborhood to build a descriptor. We denote the current oriented point inM f to be
described as (p,n), where p is the point coordinate and n is the unit normal vector. Likewise,
we denote any other oriented point in the local neighborhood in Ms as (p′,n′). For the
purpose of occlusion estimation, which will be described in the following subsection, we
now estimate a stable reference axis for the feature point p. This is done by computing the
average orientation of all normals within a small internal radius. The smoothed normal can
be seen as a reference axis for our descriptor. All normals n′ in the neighborhood are retained,
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Figure 1: The PPF histogram. (a) A PPF histogram at location p describes the relation to
all points p′ within a radius r (overlaid red here). (b) Diagram showing the usual four PPF
relational components (δ , α , β and γ) for the center point (p,n) and a point (p′,n′). (c) δγ

PPF histogram created at the location p shown in (a).

since a smoothing of these would cause too much information loss, especially in regions
with fine details. The use of a reference axis is inspired by earlier works such as [14, 21],
which, however, used multiple reference axes to build a descriptor. The internal radius of
our descriptor is always set to 10 % of the full radius used during histogram computation.

3.3 Histogram computation
To describe an oriented feature point (p,n), our method proceeds by finding all oriented
surface points (p′,n′) within a spherical Euclidean neighborhood constrained by a support
radius r. The search for these neighbors inMs is sped up using k-d trees provided by the
FLANN library [18]. The original work on PPFs [26] defined four simple geometric relations
between (p,n) and (p′,n′) as follows (see Fig. 1 for a visualization):

δ ≡ ‖p′− p‖ α ≡ ∠(n,n′) β ≡ ∠(n, p′− p) γ ≡ ∠(n′, p′− p) (1)

Depending on the fidelity of the surface model, we now have in the hundreds or thousands
of (δ ,α,β ,γ)-tuples within the radius r, which will be used for describing the feature point
p. To condense the information into a compact and descriptive representation, we bin the
observations into histograms. The original work on PPFs [26] used a 4D histogram with
54 = 625 bins for describing complete models. We tried several binning strategies, including
the original 4D binning, four individual 1D binnings and various 2D binnings. Similar to
other competing descriptors operating on a local scale [3, 10, 13], we have achieved the best
results using 2D binnings.

To our surprise, we found that the angle γ was by far the most discriminative relation for
capturing local information, while the angles α and β did not contribute to any increase in
matching rate. We believe that the poor discriminative abilities of these two relations can be
explained as follows. The α relation is a pure relative normal cosine relation, which encodes
smoothly changing surface orientations without regard to the direction to the neighbor points,
encoded in p′− p. On the other hand, β uses this direction information, but always with
respect to the same normal vector n. Consequently, this relation neglects the orientation
information provided by the neighbors in n′. The γ relation provides the best descriptive
power as it integrates both types of information (the direction information neglected by α

and the neighbor orientation neglected by β ) in a single relation. After much initial testing,
we thus ended up using a 2D histogram in the δγ-plane for our descriptor.
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Finally, we implicitly incorporate the reference axis and the α relation for occlusion es-
timation. To preserve the locality of our feature, it is important to avoid neighbor points with
opposing normals, since in a real scene only one side of an object is visible at a time. This
is enforced by the constraint α ≥ 0. Our initial evaluations have shown this constraint to be
an important component of our descriptor to achieve robustness. Indeed, without occlusion
reasoning, the matching between complete object models and incomplete scene data signifi-
cantly degrades. Moreover, the smoothing of the reference axis (see Sect. 3.2) used for this
occlusion reasoning increases matching rates further.

The main design parameters of our descriptor are the support radius r and the number of
bins along the axes of the 2D histogram. The default setting of our descriptor is to use 16
distance bins (denoted Nδ = 16) and 32 bins for the angle relation (denoted Nγ = 32). With
this setting, the total number of components, denoted N, in our descriptor is N = 16 · 32 =
512. Both the feature radius and the number of histogram bins are tested in the sensitivity
analysis in Sect. 4.2.

3.4 Descriptor matching
The last step in our local descriptor matching pipeline before the actual recognition stage is a
matching process, where feature point correspondences between the object and scene models
are obtained. A common approach is to use the L2 metric to find the nearest Euclidean
neighbors [3, 10, 13, 14, 20, 21]. The pairwise distance between a histogram descriptor on
the object HO and in the scene HS under this metric is:

dL2(HO,HS) =

√
N

∑
i=1

(HO,i−HS,i)
2 (2)

where the subscript i is used to denote the i’th component of the descriptor. We have tested
this and several other distance measures, including L1, L∞, the Kullback-Leibler divergence,
the histogram intersection kernel and the χ2 distance (more detail on these metrics can be
found in [26]). The method of choice for our PPF histograms is the χ2 distance, defined as:

dχ2(HO,HS) =
N

∑
i=1

(HO,i−HS,i)
2

HO,i +HS,i
(3)

Note that [26] achieves better results with the asymmetric version of the χ2 distance, pre-
sumably because there is a clear notion of a reference model in their retrieval application.
Contrarily, we get better matching rates with the symmetric version above, most likely be-
cause we perform a many-to-many association between local shape regions. Unlike e.g. the
L2 metric, the χ2 distance explicitly accounts for the uncertainty of the individual compar-
isons and compared to this distance measure, χ2 improved the matching rate of our descrip-
tor by 5 % to 10 %, depending on the dataset. The sensitivity analysis in Sect. 4.2 includes a
comparison between different metrics.

4 Results
This section presents our results. We first give, in Sect. 4.1, an extensive set of matching
results for measuring the ability of our descriptor to discriminate between local structures.
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Next we present a sensitivity analysis for the two main parameters of interest, the support
radius and the histogram bins, as well as for the matching metric in Sect. 4.2. And finally we
motivate the use of our descriptor for 3D object recognition and pose estimation on four real
datasets in Sect. 4.3.

All our evaluations are performed against seven descriptors, representing both classical
and new methods for local surface description. These are ECSAD [14], FPFH [20], NDHist
[3], RoPS [10], SHOT [21], Spin Images (SI) [13] and USC [24].

4.1 Matching
Previous works on local feature matching have established a comprehensive set of bench-
marks and a consistent evaluation protocol [3, 11, 21], which we followed in our tests.

For evaluation our contribution, we first considered the synthetic Bologna dataset of [21],
which consists of a set of models and synthetic scenes, all based on models from the Stanford
scanning repository2. There are 45 scenes containing between three and five object models
in random configurations. The scenes are then corrupted by two noise levels (Bologna 1)
and two decimation levels (Bologna 2), giving four variations of the whole dataset.

In addition to the synthetic dataset, the authors of [21] introduced two real datasets, one
captured by a Kinect sensor and another generated by a spacetime stereo setup. In addition
to these two datasets, we include two well-known 3D recognition datasets, UWA [16] and
Queen’s [23], which have also been used for previous feature evaluations, e.g. in [11]. For all
matching experiments, we rank all feature matches using the distance ratio of the prescribed
metric, which for our descriptor is the χ2 distance. Collecting all matches in a single dataset
in a sorted list allows us to compute precision-recall curves as well as maximum F1 scores
along the curves to get a single measure of accuracy. Let P and R denote precision and recall,
respectively. The F1 score is then defined as the harmonic mean of the two:

F1 = 2 · P ·R
P+R

(4)

The results for all eight datasets are shown in Fig. 2 with the maximum F1 scores along
the curves shown in parentheses. From the results on the synthetic scenes in Fig. 2, our
descriptors shows a high degree of robustness towards both noise and subsampling. Some
descriptors suffer greatly under noise (FPFH, NDHist and SI), while subsampling also causes
problems to some of the descriptors based on reference frames (SHOT and USC). The rel-
ative improvement using our descriptor over the next best descriptor ranges from 5.33 %
(relative to USC at a noise level of 0.1) to 13.5 % (relative to RoPS at a resolution of 50 %).

The gap down to previous works is even higher when considering the real datasets in
Fig. 2, where quite significant improvements are achieved. For the UWA, Queen’s, Space-
time and Kinect the respective improvements (in terms of F1 score) over the second best
descriptor in each case are: 147 %, 203 %, 48.5 % and 33.3 %. These four datasets represent
a variety of sensor characteristics going from high accuracy (UWA) to low accuracy (Kinect)
and with varying levels of noise and missing data points (holes). We note that our results for
the competing descriptors corroborate the most recent evaluations done in [3, 11].

2http://graphics.stanford.edu/data/3Dscanrep
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(c) Bologna 2 (resolution of 50 %).
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(d) Bologna 2 (resolution of 12.5 %).
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(f) Queen’s.
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(h) Kinect.
Figure 2: Matching results for the synthetic (top four) and real (bottom four) datasets. F1
scores are shown in parentheses.



8 BUCH, KRAFT: LOCAL POINT PAIR FEATURE HISTOGRAM

0.6

0.65

0.7

8

0.75

4816

0.8

4024
3232 24

40 16
8

Figure 3: F1 scores for dif-
ferent bin numbers.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: F1 scores for dif-
ferent support radii.

Distance F1 score

χ2 ratio 0.755
L1 ratio 0.751
∩ 0.731
L2 ratio 0.670
KL ratio 0.339
L∞ ratio 0.210

Table 1: F1 scores for dif-
ferent distance measures.

4.2 Sensitivity analysis
In this section, we further analyze the behavior of our descriptor under varying settings of
the number of histogram bins, the local support radius and the matching metric. These tests
were performed on the Bologna and UWA datasets, but similar figures are obtained when
running these analyses on other datasets.

In Fig. 3 we report the influence of different binnings on the performance in terms of F1
score on the UWA dataset. An observable peak appears for 16 distance bins and 32 angle
bins. In general, more angular bins are better up to a certain point, especially if many distance
bins are also used. This is likely because of instabilities in determining the correct bin for a
single δγ pair.

Fig. 4 shows F1 scores on the same dataset with the default setting of 16 distance and 32
angle bins, but for varying support radii. There is a clear rise in performance from a too small
(indiscriminative) radius to a clear peak around 50 mm, followed by smooth decay for too
large (unstable) radii, where occlusions and cluttering elements start to impact performance.

Finally, Tab. 1 shows the performance of our descriptor using different matching meth-
ods, sorted from best to worst. For all tested metrics, we tried both the nearest neighbor
distance and the nearest to second-nearest distance ratio [15] (also used in the previous sec-
tion) and achieved best performances using the ratio for all metrics, except for the histogram
intersection metric ∩. The L2 and χ2 metrics are defined in 2–3. The remaining metrics are
defined as follows:

dL1(HO,HS) =
N

∑
i=1
|HO,i−HS,i| (5)

d∩(HO,HS) =
N

∑
i=1

min(HO,i,HS,i) (6)

dKL(HO,HS) =
N

∑
i=1

(
HO,i log

HO,i

HS,i
+HS,i log

HS,i

HO,i

)
(7)

dL∞
(HO,HS) =

N
max
i=1
|HO,i−HS,i| (8)

where KL denotes the symmetric Kullback-Leibler divergence.
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1000 RANSAC iterations 100 RANSAC iterations
UWA Queen’s Spacetime Kinect UWA Queen’s Spacetime Kinect

ECSAD 0.907 0.731 0.769 0.773 0.681 0.402 0.606 0.585
FPFH 0.981 0.426 0.800 0.433 0.882 0.113 0.703 0.231
NDHist 0.941 0.437 0.667 0.426 0.800 0.165 0.562 0.351
RoPS 0.811 0.675 0.829 0.667 0.523 0.362 0.703 0.585
SHOT 0.888 0.779 0.933 0.825 0.662 0.410 0.884 0.757
SI 0.881 0.600 0.857 0.627 0.525 0.191 0.737 0.441
USC 0.738 0.429 0.769 0.854 0.574 0.248 0.625 0.789
PPFHist 0.995 0.920 0.933 0.907 0.981 0.858 0.884 0.825

Table 2: Recognition performances (F1 scores) for the four real datasets. Best results are
highlighted in bold. The cells with gray color are the four cases where our descriptor does
not provide superior performance using only 100 RANSAC iterations, while still using 1000
iterations for the competing descriptor.

4.3 Recognition

Finally, we used our and all competing descriptors for 3D object recognition and 6 DoF pose
estimation on the four real datasets. We used RANSAC [3, 8] with the correspondences
given by the different descriptors as inputs. We then searched for the objects by sampling
three correspondences at a time to generate candidate poses, which were then verified by
their consensus set size. The parameters of RANSAC were tuned jointly on all four datasets
and all eight descriptors to maximize the number of true positives and minimize the number
of false positives to allow for best performances in terms of F1 scores. The recognition
results of this experiment are reported in Tab. 2 and a qualitative result using the three top
performing descriptors on the Queen’s dataset is shown in Fig. 5.

We used both a high and a low number of RANSAC iterations (1000 and 100, respec-
tively). The 1000 iterations should be sufficient for producing at least one all-inlier corre-
spondence triplet, thus providing optimistic performance numbers for all descriptors, since
much of the noise from the matching process (i.e. the outlier correspondences) will be han-
dled by RANSAC. To get a better picture of the dependency of the recognition performance
on the strength of the matches, we also performed the same test with 100 RANSAC iter-
ations. While many descriptor performances drop significantly, our descriptor maintains a
high performance. Our descriptor outperforms all other descriptors in three of the datasets.
For the fourth dataset, Spacetime, the performance of our descriptor is tied with SHOT3.
Furthermore, with 100 RANSAC iterations we still outperform the competing descriptors in
all but four cases (see Tab. 2), even when they are used with 1000 RANSAC iterations.

Timing-wise, substantial gains are achieved by reducing the number of RANSAC iter-
ations. With 1000 iterations, each object instance is searched for in 1–2 s, depending on
the dataset. Reducing the number of iterations linearly reduces this recognition time, thus
allowing for objects to be recognized in a few hundred milliseconds with 100 iterations. For
this specific dataset, the prior stages of descriptor estimation and matching for a full scene
take a few seconds for our descriptor, making these stages the dominating processes when
using 100 RANSAC iterations. These processes are significantly slower for many other de-
scriptors.

3The SHOT descriptor has been optimized partially on the Spacetime dataset.
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(a) ECSAD. (b) SHOT. (c) PPFHist.

Figure 5: Recognition output for the three top performing descriptors for the Queen’s dataset,
in this example for the scene named im21. The scene mesh is shown with gray colors and
object alignments are shown with unique colors. The minimally required number of inliers
for RANSAC is conservatively set to 5 % and only PPFHist is able to produce good enough
correspondences to recognize all objects correctly when using 100 RANSAC iterations.

5 Conclusions and future work

This work contributed a new fast, yet highly discriminative local 3D descriptor for point
cloud data. The descriptor uses a 2D histogram of position and normal information in a local
neighborhood, and the χ2 distance is used for matching these new descriptors.

We have presented a sensitivity analysis that allows us to choose the parameters in the
descriptor creation process in a structured way. Furthermore, we have shown that our de-
scriptor provides better matching results compared to seven state of the art descriptors on
eight datasets (four artificial and four real world). Finally, we also presented experiments
that show the applicability of the descriptor to 3D pose estimation where we match or sur-
pass state of the art performances on the four real world datasets. Overall, we argue that
our new descriptor is working better than previous descriptors and it does so robustly for
different geometric structures.

The presented descriptor is only able to describe geometric structures. The integration of
appearance information is a task that should be addressed in the future to make the descrip-
tor richer and applicable to further use-cases. In the same stride, an automatic adjustment of
parameters (feature radius is likely the most important parameter here) would be important
to integrate. The results in this work have shown a very strong performance for multiple
different datasets, all with the same parameter settings, but we foresee that this is not a given
with all kinds of data. We have also deferred any comparisons against more recent learned
descriptors, provided by e.g. deep learning methods. This is clearly an important next as-
sessment to be done, although it requires other benchmark datasets that provide training data
for the learning-based methods. Finally, we are interested in applying the new descriptor to
different applications, such as object reconstruction, scene registration and face recognition.
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